17,925 research outputs found

    Extreme Supernova Models for the Superluminous Transient ASASSN-15lh

    Get PDF
    The recent discovery of the unprecedentedly superluminous transient ASASSN-15lh (or SN 2015L) with its UV-bright secondary peak challenges all the power-input models that have been proposed for superluminous supernovae. Here we examine some of the few viable interpretations of ASASSN-15lh in the context of a stellar explosion, involving combinations of one or more power inputs. We model the lightcurve of ASASSN-15lh with a hybrid model that includes contributions from magnetar spin-down energy and hydrogen-poor circumstellar interaction. We also investigate models of pure circumstellar interaction with a massive hydrogen-deficient shell and discuss the lack of interaction features in the observed spectra. We find that, as a supernova ASASSN-15lh can be best modeled by the energetic core-collapse of a ~40 Msun star interacting with a hydrogen-poor shell of ~20 Msun. The circumstellar shell and progenitor mass are consistent with a rapidly rotating pulsational pair-instability supernova progenitor as required for strong interaction following the final supernova explosion. Additional energy injection by a magnetar with initial period of 1-2 ms and magnetic field of 0.1-1 x 10^14 G may supply the excess luminosity required to overcome the deficit in single-component models, but this requires more fine-tuning and extreme parameters for the magnetar, as well as the assumption of efficient conversion of magnetar energy into radiation. We thus favor a single-input model where the reverse shock formed in a strong SN ejecta-CSM interaction following a very powerful core-collapse SN explosion can supply the luminosity needed to reproduce the late-time UV-bright plateau.Comment: 8 pages, 3 figure

    Yang-Mills gravity in biconformal space

    Get PDF
    We write a gravity theory with Yang-Mills type action using the biconformal gauging of the conformal group. We show that the resulting biconformal Yang-Mills gravity theories describe 4-dim, scale-invariant general relativity in the case of slowly changing fields. In addition, we systematically extend arbitrary 4-dim Yang-Mills theories to biconformal space, providing a new arena for studying flat space Yang-Mills theories. By applying the biconformal extension to a 4-dim pure Yang-Mills theory with conformal symmetry, we establish a 1-1, onto mapping between a set of gravitational gauge theories and 4-dim, flat space gauge theories.Comment: 27 pages; paper emphasis shifted to focus on gravity; references adde

    Attosecond pulse shaping around a Cooper minimum

    Full text link
    High harmonic generation (HHG) is used to measure the spectral phase of the recombination dipole matrix element (RDM) in argon over a broad frequency range that includes the 3p Cooper minimum (CM). The measured RDM phase agrees well with predictions based on the scattering phases and amplitudes of the interfering s- and d-channel contributions to the complementary photoionization process. The reconstructed attosecond bursts that underlie the HHG process show that the derivative of the RDM spectral phase, the group delay, does not have a straight-forward interpretation as an emission time, in contrast to the usual attochirp group delay. Instead, the rapid RDM phase variation caused by the CM reshapes the attosecond bursts.Comment: 5 pages, 5 figure

    Modulation of endoglin expression in islets of langerhans by VEGF reveals a novel regulator of islet endothelial cell function

    Get PDF
    BACKGROUND: Endoglin/CD105 is an auxiliary receptor for transforming growth factor-β with established roles in vascular remodelling. It has recently been shown that heterozygous endoglin deficiency in mice decreases insulin secretion in an animal model of obesity, highlighting a potential role for endoglin in the regulation of islet function. We have previously identified two different populations of endoglin expressing cells in human and mouse islets which are: (i) endothelial cells (ECs) and (ii) islet mesenchymal stromal cells. The contribution of islet EC endoglin expression to islet development and sensitivity to VEGF is unknown and is the focus of this study. RESULTS: In vitro culture of mouse islets with VEGF164 for 48 h increased endoglin mRNA levels above untreated controls but VEGF did not modulate VEGFR2, CD31 or CD34 mRNA expression or islet viability. Removal of EC-endoglin expression in vivo reduced islet EC area but had no apparent effect on islet size or architecture. CONCLUSION: EC-specific endoglin expression in islets is sensitive to VEGF and plays partial roles in driving islet vascular development, however such regulation appears to be distinct to mechanisms required to modulate islet viability and size

    Distributions and Variability of Particulate Organic Matter in a Coastal Upwelling System

    Get PDF
    In this study we examined the spatial and temporal variability of particulate organic material (POM) off Oregon during the upwelling season. High-resolution vertical profiling of beam attenuation was conducted along two cross-shelf transects. One transect was located in a region where the shelf is relatively uniform and narrow (off Cascade Head (CH)); the second transect was located in a region where the shelf is shallow and wide (off Cape Perpetua (CP)). In addition, water samples were collected for direct analysis of chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON). Beam attenuation was highly correlated with POC and PON. Striking differences in distribution patterns and characteristics of POM were observed between CH and CP. Off CH, elevated concentrations of chlorophyll and POC were restricted to the inner shelf and were highly variable in time. The magnitude of the observed short-term temporal variability was of the same order as that of the seasonal variability reported in previous studies. Elevated concentrations of nondegraded chlorophyll and POM were observed near the bottom. Downwelling and rapid sinking are two mechanisms by which phytoplankton cells can be delivered to the bottom before being degraded. POM may be then transported across the shelf via the benthic nepheloid layer. Along the CP transect, concentrations of POM were generally higher than they were along the CH transect and extended farther across the shelf. Characteristics of surface POM, namely, C: N ratios and carbon: chlorophyll ratios, differed between the two sites. These differences can be attributed to differences in shelf circulation

    Under Pressure: Quenching Star Formation in Low-Mass Satellite Galaxies via Stripping

    Get PDF
    Recent studies of galaxies in the local Universe, including those in the Local Group, find that the efficiency of environmental (or satellite) quenching increases dramatically at satellite stellar masses below ~ 108 M⊙10^8\ {\rm M}_{\odot}. This suggests a physical scale where quenching transitions from a slow "starvation" mode to a rapid "stripping" mode at low masses. We investigate the plausibility of this scenario using observed HI surface density profiles for a sample of 66 nearby galaxies as inputs to analytic calculations of ram-pressure and viscous stripping. Across a broad range of host properties, we find that stripping becomes increasingly effective at $M_{*} < 10^{8-9}\ {\rm M}_{\odot},reproducingthecriticalmassscaleobserved.However,forcanonicalvaluesofthecircumgalacticmediumdensity(, reproducing the critical mass scale observed. However, for canonical values of the circumgalactic medium density (n_{\rm halo} < 10^{-3.5} {\rm cm}^{-3}$), we find that stripping is not fully effective; infalling satellites are, on average, stripped of < 40 - 70% of their cold gas reservoir, which is insufficient to match observations. By including a host halo gas distribution that is clumpy and therefore contains regions of higher density, we are able to reproduce the observed HI gas fractions (and thus the high quenched fraction and short quenching timescale) of Local Group satellites, suggesting that a host halo with clumpy gas may be crucial for quenching low-mass systems in Local Group-like (and more massive) host halos.Comment: updated version after review, now accepted to MNRAS; Accepted 2016 August 22. Received 2016 August 18; in original form 2016 June 2

    Aspherical Explosion Models for SN 1998bw/GRB 980425

    Get PDF
    The recent discovery of the unusual supernova SN1998bw and its apparent correlation with the gamma-ray burst GRB 980425 has raised new issues concerning both the GRB and supernovae. Although the spectra resemble those of TypeIc supernovae, there are distinct differences at early times and SN1998bw appeared to be unusually bright and red at maximum light. The apparent expansion velocities inferred by the Doppler shift of (unidentified) absorption features appeared to be high, making SN1998bw a possible candidate for a "hypernova" with explosion energies between 20 and 50E51 erg and ejecta masses in excess of 6 - 15 M_o. Based on light curve calculations for aspherical explosions and guided by the polarization observations of "normal" SNIc and related events, we present an alternative picture that allows SN1998bw to have an explosion energy and ejecta mass consistent with core collapse supernovae (although at the 'bright' end). We show that the LC of SN1998bw can be understood as result of an aspherical explosion along the rotational axis of a basically spherical, non-degenerate C/O core of massive star with an explosion energy of 2foe and a total ejecta mass of 2 M_o if it is seen from high inclinations with respect to the plane of symmetry. In this model, the high expansion velocities are a direct consequence of an aspherical explosion which, in turn, produces oblate iso-density contours. It suggests that the fundamental core-collapse explosion process itself is strongly asymmetric.Comment: 12 pages, 8 figures, latex, aas2pp4.sty, submitted to Ap

    Wigner-Yanase skew information as tests for quantum entanglement

    Full text link
    A Bell-type inequality is proposed in terms of Wigner-Yanase skew information, which is quadratic and involves only one local spin observable at each site. This inequality presents a hierarchic classification of all states of multipartite quantum systems from separable to fully entangled states, which is more powerful than the one presented by quadratic Bell inequalities from two-entangled to fully entangled states. In particular, it is proved that the inequality provides an exact test to distinguish entangled from nonentangled pure states of two qubits. Our inequality sheds considerable light on relationships between quantum entanglement and information theory.Comment: 5 page

    Oxygen Production and Carbon Sequestration in an Upwelling Coastal Margin

    Get PDF
    We examined high-resolution cross-shelf distributions of particulate organic carbon (POC) and dissolved O(2) during the upwelling season off the Oregon coast. Oxygen concentrations were supersaturated in surface waters, and hypoxic in near-bottom waters, with greatly expanded hypoxic conditions late in the season. Simplified time-dependent mass balances on cross-shelf integrated concentrations of these two parameters, found the following: ( 1) The average net rate of photosynthesis generated 2.1 mmol O(2) m(-3) d(-1) and ( 2) essentially none of the corresponding net carbon fixation of 1.4 mmol m(-3) d(-1) could be accounted for in the observed standing stocks of POC. After examining other possible sinks for carbon, we conclude that most of the net production is being exported to the adjacent deep ocean. A simplified POC budget suggests that about a quarter of the export is via alongshore advection, and the remainder is due to some other process. We propose a simplistic conceptual model of across-shelf transport in which POC sinks to the bottom boundary layer where it comes into contact with mineral ballast material but is kept in suspension by high turbulence. When upwelling conditions ease, the BBL waters move seaward, carrying the suspended, ballasted POC with it where it sinks rapidly into the deep ocean at the shelf break. This suggests a mechanism whereby the duration and frequency of upwelling events and relaxations can determine the extent to which new carbon produced by photosynthesis in the coastal ocean is exported to depth rather than being respired on the shelf

    Maximum Brightness and Post-Maximum Decline of Light Curves of SN~Ia: A Comparison of Theory and Observations

    Get PDF
    We compare the observed correlations between the maximum brightness, postmaximum decline rate and color at maximum light of Type Ia supernovae (SN Ia) with model predictions. The observations are based on a total of 40 SN Ia with 29 SN of the Calan Tololo Supernova Search and 11 local SN which cover a range of 2 mag in the absolute visual brightness. The observed correlations are not tight, one dimensional relations. Supernovae with the same postmaximum decline or the same color have a spread in visual magnitude of about 0.7 mag. The dispersion in the color-magnitude relation may result from uncertainties in the distance determinations or the interstellar reddening within the host galaxy. The dispersion in the decline rate-magnitude relation suggests that an intrinsic spread in the supernova properties exists that cannot be accounted for by any single relation between visual brightness and postmaximum decline. Theoretical correlations are derived from a grid of models which encompasses delayed detonations, pulsating delayed detonations, the merging scenario and helium detonations. We find that the observed correlations can be understood in terms of explosions of Chandrasekhar mass white dwarfs. Our models show an intrinsic spread in the relations of about 0.5 mag in the maximum brightness and about 0.1 mag in the B-V color. Our study provides strong evidence against the mechanism of helium detonation for subluminous, red SN Ia.Comment: 7 pages, 3 figures, macros ''aaspp.sty'. LaTeX Style. Astrophysical Journal Letters, submitted Jul. 1995, revised Aug. 1995, resubmitted Sep. 199
    • …
    corecore