154 research outputs found

    Dynamical Symmetry Enlargement Versus Spin-Charge Decoupling in the One-Dimensional SU(4) Hubbard Model

    Full text link
    We investigate dynamical symmetry enlargement in the half-filled SU(4) Hubbard chain using non-perturbative renormalization group and Quantum Monte Carlo techniques. A spectral gap is shown to open for arbitrary Coulombic repulsion UU. At weak coupling, U3tU \lesssim 3t, a SO(8) symmetry between charge and spin-orbital excitations is found to be dynamically enlarged at low energy. At strong coupling, U6tU \gtrsim 6t, the charge degrees of freedom dynamically decouple and the resulting effective theory in the spin-orbital sector is that of the SO(6) antiferromagnetic Heisenberg model. Both regimes exhibit spin-Peierls order. However, although spin-orbital excitations are incoherentincoherent in the SO(6) regime they are coherentcoherent in the SO(8) one. The cross-over between these regimes is discussed.Comment: 4 pages, 2 figure

    Duality approach to one-dimensional degenerate electronic systems

    Full text link
    We investigate the possible classification of zero-temperature spin-gapped phases of multicomponent electronic systems in one spatial dimension. At the heart of our analysis is the existence of non-perturbative duality symmetries which emerge within a low-energy description. These dualities fall into a finite number of classes that can be listed and depend only on the algebraic properties of the symmetries of the system: its physical symmetry group and the maximal continuous symmetry group of the interaction. We further characterize possible competing orders associated to the dualities and discuss the nature of the quantum phase transitions between them. Finally, as an illustration, the duality approach is applied to the description of the phases of two-leg electronic ladders for incommensurate filling.Comment: 53 pages, 3 figures, published versio

    Effect of Hund coupling in the one-dimensional SU(4) Hubbard model

    Full text link
    The one-dimensional SU(4) Hubbard model perturbed by Hund coupling is studied, away from half-filling, by means of renormalization group and bosonization methods. A spectral gap is always present in the spin-orbital sector irrespective of the magnitude of the Coulomb repulsion. We further distinguish between two qualitatively different regimes. At small Hund coupling, we find that the symmetry of the system is dynamically enlarged to SU(4) at low energy with the result of {\it coherent} spin-orbital excitations. When the charge sector is not gapped, a superconducting instability is shown to exist. At large Hund coupling, the symmetry is no longer enlarged to SU(4) and the excitations in the spin sector become {\it incoherent}. Furthermore, the superconductivity can be suppressed in favor of the conventional charge density wave state.Comment: 10 pages, 1 figur

    Equilibrium Sampling From Nonequilibrium Dynamics

    Full text link
    We present some applications of an Interacting Particle System (IPS) methodology to the field of Molecular Dynamics. This IPS method allows several simulations of a switched random process to keep closer to equilibrium at each time, thanks to a selection mechanism based on the relative virtual work induced on the system. It is therefore an efficient improvement of usual non-equilibrium simulations, which can be used to compute canonical averages, free energy differences, and typical transitions paths

    Effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model

    Full text link
    We study the effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model. We allow the exchange in spin (J1J_1) and orbital (J2J_2) channel to be different and thus reduce the symmetry to SU(2) \otimes SU(2). A magnetic field hh along the SzS^z direction is also applied. Using the formalism developped by Azaria et al we extend their analysis of the isotropic J1=J2J_1=J_2, h=0 case and obtain the low-energy effective theory near the SU(4) point in the asymmetric case. An accurate analysis of the renormalization group flow is presented with a particular emphasis on the effect of the anisotropy. In zero magnetic field, we retrieve the same qualitative low-energy physics than in the isotropic case. In particular, the massless behavior found on the line J1=J2>K/4J_1=J_2>K/4 extends in a large anisotropic region. We discover though that the anisotropy plays its trick in allowing non trivial scaling behaviors of the physical quantities. When a magnetic field is present the effect of the anisotropy is striking. In addition to the usual commensurate-incommensurate phase transition that occurs in the spin sector of the theory, we find that the field may induce a second transition of the KT type in the remaining degrees of freedom to which it does not couple directly. In this sector, we find that the effective theory is that of an SO(4) Gross-Neveu model with an h-dependent coupling that may change its sign as h varies.Comment: 14 pages, 5 Figs, added referenc

    Ferromagnetism in the one-dimensional Hubbard model with orbital degeneracy: From low to high electron density

    Full text link
    We studied ferromagnetism in the one-dimensional Hubbard model with doubly degenerate atomic orbitals by means of the density-matrix renormalization-group method and obtained the ground-state phase diagrams. It was found that ferromagnetism is stable from low to high (0< n < 1.75) electron density when the interactions are sufficiently strong. Quasi-long-range order of triplet superconductivity coexists with the ferromagnetic order for a strong Hund coupling region, where the inter-orbital interaction U'-J is attractive. At quarter-filling (n=1), the insulating ferromagnetic state appears accompanying orbital quasi-long-range order. For low densities (n<1), ferromagnetism occurs owing to the ferromagnetic exchange interaction caused by virtual hoppings of electrons, the same as in the quarter-filled system. This comes from separation of the charge and spin-orbital degrees of freedom in the strong coupling limit. This ferromagnetism is fragile against variation of band structure. For high densities (n>1), the phase diagram of the ferromagnetic phase is similar to that obtained in infinite dimensions. In this case, the double exchange mechanism is operative to stabilize the ferromagnetic order and this long-range order is robust against variation of the band-dispersion. A partially polarized state appears in the density region 1.68<n<1.75 and phase separation occurs for n just below the half-filling (n=2).Comment: 16 pages, 16 figures, final version, references adde

    Effects of a magnetic field on the one-dimensional spin-orbital model

    Full text link
    We study the effects of a uniform magnetic field on the one-dimensional spin-orbital model in terms of effective field theories. Two regions are examined: one around the SU(4) point (J=K/4) and the other with K<<J. We found that when JK/4J\leq K/4, the spin and orbital correlation functions exhibit power-law decay with nonuniversal exponents. In the region with J>K/4, the excitation spectrum has a gap. When the magnetic field is beyond some critical value, a quantum phase transition occurs. However, the correlation functions around the SU(4) point and the region with K<<J exhibit distinct behavior. This results from different structures of excitation spectra in both regime.Comment: 22 pages, no figure

    Phase diagram of a 1 dimensional spin-orbital model

    Full text link
    We study a 1 dimensional spin-orbital model using both analytical and numerical methods. Renormalization group calculations are performed in the vicinity of a special integrable point in the phase diagram with SU(4) symmetry. These indicate the existence of a gapless phase in an extended region of the phase diagram, missed in previous studies. This phase is SU(4) invariant at low energies apart from the presence of different velocities for spin and orbital degrees of freedom. The phase transition into a gapped dimerized phase is in a generalized Kosterlitz-Thouless universality class. The phase diagram of this model is sketched using the density matrix renormalization group technique.Comment: 11 pages, 5 figures, new references adde

    Metal-insulator transition in the one-dimensional SU(N) Hubbard model

    Full text link
    We investigate the metal-insulator transition of the one-dimensional SU(N) Hubbard model for repulsive interaction. Using the bosonization approach a Mott transition in the charge sector at half-filling (k_F=\pi/Na_0) is conjectured for N > 2. Expressions for the charge and spin velocities as well as for the Luttinger liquid parameters and some correlation functions are given. The theoretical predictions are compared with numerical results obtained with an improved zero-temperature quantum Monte Carlo approach. The method used is a generalized Green's function Monte Carlo scheme in which the stochastic time evolution is partially integrated out. Very accurate results for the gaps, velocities, and Luttinger liquid parameters as a function of the Coulomb interaction U are given for the cases N=3 and N=4. Our results strongly support the existence of a Mott-Hubbard transition at a {\it non-zero} value of the Coulomb interaction. We find Uc2.2U_c \sim 2.2 for N=3 and Uc2.8U_c \sim 2.8 for N=4.Comment: 22 pages, 9 Fig

    Imidazoacridinone-dependent lysosomal photodestruction: a pharmacological Trojan horse approach to eradicate multidrug-resistant cancers

    Get PDF
    Multidrug resistance (MDR) remains a primary hindrance to curative cancer therapy. Thus, introduction of novel strategies to overcome MDR is of paramount therapeutic significance. Sequestration of chemotherapeutics in lysosomes is an established mechanism of drug resistance. Here, we show that MDR cells display a marked increase in lysosome number. We further demonstrate that imidazoacridinones (IAs), which are cytotoxic fluorochromes, undergo a dramatic compartmentalization in lysosomes because of their hydrophobic weak base nature. We hence developed a novel photoactivation-based pharmacological Trojan horse approach to target and eradicate MDR cancer cells based on photo-rupture of IA-loaded lysosomes and tumor cell lysis via formation of reactive oxygen species. Illumination of IA-loaded cells resulted in lysosomal photodestruction and restoration of parental cell drug sensitivity. Lysosomal photodestruction of MDR cells overexpressing the key MDR efflux transporters ABCG2, ABCB1 or ABCC1 resulted in 10- to 52-fold lower IC(50) values of various IAs, thereby restoring parental cell sensitivity. Finally, in vivo application of this photodynamic therapy strategy after i.v. injection of IAs in human ovarian tumor xenografts in the chorioallantoic membrane model revealed selective destruction of tumors and their associated vasculature. These findings identify lysosomal sequestration of IAs as an Achilles heel of MDR cells that can be harnessed to eradicate MDR tumor cells via lysosomal photodestruction
    corecore