138 research outputs found

    Dynamical Symmetry Enlargement Versus Spin-Charge Decoupling in the One-Dimensional SU(4) Hubbard Model

    Full text link
    We investigate dynamical symmetry enlargement in the half-filled SU(4) Hubbard chain using non-perturbative renormalization group and Quantum Monte Carlo techniques. A spectral gap is shown to open for arbitrary Coulombic repulsion UU. At weak coupling, U≲3tU \lesssim 3t, a SO(8) symmetry between charge and spin-orbital excitations is found to be dynamically enlarged at low energy. At strong coupling, U≳6tU \gtrsim 6t, the charge degrees of freedom dynamically decouple and the resulting effective theory in the spin-orbital sector is that of the SO(6) antiferromagnetic Heisenberg model. Both regimes exhibit spin-Peierls order. However, although spin-orbital excitations are incoherentincoherent in the SO(6) regime they are coherentcoherent in the SO(8) one. The cross-over between these regimes is discussed.Comment: 4 pages, 2 figure

    Protein-coated corrole nanoparticles for the treatment of prostate cancer cells

    Get PDF
    Development of novel therapeutic strategies to eradicate malignant tumors is of paramount importance in cancer research. In a recent study, we have introduced a facile protocol for the preparation of corrole-protein nanoparticles (NPs). These NPs consist of a corrole-core coated with protein. We now report that a novel lipophilic corrole, (2)Ga, delivered as human serum albumin (HSA)-coated NPs, displayed antineoplastic activity towards human prostate cancer DU-145 cells. Cryo-TEM analysis of these NPs revealed an average diameter of 50.2 ± 8.1 nm with a spherical architecture exhibiting low polydispersity. In vitro cellular uptake of (2)Ga/albumin NPs was attributable to rapid internalization of the corrole through ligand binding-dependent extracellular release and intercalation of the corrole cargo into the lipid bilayer of the plasma membrane. This finding is in contrast with a previously reported study on corrole-protein NPs that displayed cellular uptake via endocytosis. Investigation of the non-light-induced mechanism of action of (2)Ga suggested the induction of necrosis through plasma membrane destabilization, impairment of calcium homeostasis, lysosomal stress and rupture, as well as formation of reactive oxygen species (ROS). (2)Ga also exhibited potent light-induced cytotoxicity through ROS generation. These findings demonstrate a rapid cellular uptake of (2)Ga/protein NPs along with targeted induction of tumor cell necrosis

    Effect of Hund coupling in the one-dimensional SU(4) Hubbard model

    Full text link
    The one-dimensional SU(4) Hubbard model perturbed by Hund coupling is studied, away from half-filling, by means of renormalization group and bosonization methods. A spectral gap is always present in the spin-orbital sector irrespective of the magnitude of the Coulomb repulsion. We further distinguish between two qualitatively different regimes. At small Hund coupling, we find that the symmetry of the system is dynamically enlarged to SU(4) at low energy with the result of {\it coherent} spin-orbital excitations. When the charge sector is not gapped, a superconducting instability is shown to exist. At large Hund coupling, the symmetry is no longer enlarged to SU(4) and the excitations in the spin sector become {\it incoherent}. Furthermore, the superconductivity can be suppressed in favor of the conventional charge density wave state.Comment: 10 pages, 1 figur

    Protein-coated corrole nanoparticles for the treatment of prostate cancer cells

    Get PDF
    Development of novel therapeutic strategies to eradicate malignant tumors is of paramount importance in cancer research. In a recent study, we have introduced a facile protocol for the preparation of corrole-protein nanoparticles (NPs). These NPs consist of a corrole-core coated with protein. We now report that a novel lipophilic corrole, (2)Ga, delivered as human serum albumin (HSA)-coated NPs, displayed antineoplastic activity towards human prostate cancer DU-145 cells. Cryo-TEM analysis of these NPs revealed an average diameter of 50.2 ± 8.1 nm with a spherical architecture exhibiting low polydispersity. In vitro cellular uptake of (2)Ga/albumin NPs was attributable to rapid internalization of the corrole through ligand binding-dependent extracellular release and intercalation of the corrole cargo into the lipid bilayer of the plasma membrane. This finding is in contrast with a previously reported study on corrole-protein NPs that displayed cellular uptake via endocytosis. Investigation of the non-light-induced mechanism of action of (2)Ga suggested the induction of necrosis through plasma membrane destabilization, impairment of calcium homeostasis, lysosomal stress and rupture, as well as formation of reactive oxygen species (ROS). (2)Ga also exhibited potent light-induced cytotoxicity through ROS generation. These findings demonstrate a rapid cellular uptake of (2)Ga/protein NPs along with targeted induction of tumor cell necrosis

    Duality approach to one-dimensional degenerate electronic systems

    Full text link
    We investigate the possible classification of zero-temperature spin-gapped phases of multicomponent electronic systems in one spatial dimension. At the heart of our analysis is the existence of non-perturbative duality symmetries which emerge within a low-energy description. These dualities fall into a finite number of classes that can be listed and depend only on the algebraic properties of the symmetries of the system: its physical symmetry group and the maximal continuous symmetry group of the interaction. We further characterize possible competing orders associated to the dualities and discuss the nature of the quantum phase transitions between them. Finally, as an illustration, the duality approach is applied to the description of the phases of two-leg electronic ladders for incommensurate filling.Comment: 53 pages, 3 figures, published versio

    A note on density correlations in the half-filled Hubbard model

    Get PDF
    We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially.Comment: 3 pages, RevTe

    Equilibrium Sampling From Nonequilibrium Dynamics

    Full text link
    We present some applications of an Interacting Particle System (IPS) methodology to the field of Molecular Dynamics. This IPS method allows several simulations of a switched random process to keep closer to equilibrium at each time, thanks to a selection mechanism based on the relative virtual work induced on the system. It is therefore an efficient improvement of usual non-equilibrium simulations, which can be used to compute canonical averages, free energy differences, and typical transitions paths

    Effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model

    Full text link
    We study the effect of symmetry breaking perturbations in the one-dimensional SU(4) spin-orbital model. We allow the exchange in spin (J1J_1) and orbital (J2J_2) channel to be different and thus reduce the symmetry to SU(2) ⊗\otimes SU(2). A magnetic field hh along the SzS^z direction is also applied. Using the formalism developped by Azaria et al we extend their analysis of the isotropic J1=J2J_1=J_2, h=0 case and obtain the low-energy effective theory near the SU(4) point in the asymmetric case. An accurate analysis of the renormalization group flow is presented with a particular emphasis on the effect of the anisotropy. In zero magnetic field, we retrieve the same qualitative low-energy physics than in the isotropic case. In particular, the massless behavior found on the line J1=J2>K/4J_1=J_2>K/4 extends in a large anisotropic region. We discover though that the anisotropy plays its trick in allowing non trivial scaling behaviors of the physical quantities. When a magnetic field is present the effect of the anisotropy is striking. In addition to the usual commensurate-incommensurate phase transition that occurs in the spin sector of the theory, we find that the field may induce a second transition of the KT type in the remaining degrees of freedom to which it does not couple directly. In this sector, we find that the effective theory is that of an SO(4) Gross-Neveu model with an h-dependent coupling that may change its sign as h varies.Comment: 14 pages, 5 Figs, added referenc

    Effects of a magnetic field on the one-dimensional spin-orbital model

    Full text link
    We study the effects of a uniform magnetic field on the one-dimensional spin-orbital model in terms of effective field theories. Two regions are examined: one around the SU(4) point (J=K/4) and the other with K<<J. We found that when J≤K/4J\leq K/4, the spin and orbital correlation functions exhibit power-law decay with nonuniversal exponents. In the region with J>K/4, the excitation spectrum has a gap. When the magnetic field is beyond some critical value, a quantum phase transition occurs. However, the correlation functions around the SU(4) point and the region with K<<J exhibit distinct behavior. This results from different structures of excitation spectra in both regime.Comment: 22 pages, no figure

    Phase diagram of a 1 dimensional spin-orbital model

    Full text link
    We study a 1 dimensional spin-orbital model using both analytical and numerical methods. Renormalization group calculations are performed in the vicinity of a special integrable point in the phase diagram with SU(4) symmetry. These indicate the existence of a gapless phase in an extended region of the phase diagram, missed in previous studies. This phase is SU(4) invariant at low energies apart from the presence of different velocities for spin and orbital degrees of freedom. The phase transition into a gapped dimerized phase is in a generalized Kosterlitz-Thouless universality class. The phase diagram of this model is sketched using the density matrix renormalization group technique.Comment: 11 pages, 5 figures, new references adde
    • …
    corecore