
PHYSICAL REVIEW B 15 SEPTEMBER 1999-IIVOLUME 60, NUMBER 12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover
Density correlations in the half-filled Hubbard model
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We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive
grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is
not obvious from the Bethe Ansatz/conformal field theory~BA/CFT! approach. We show that by supplement-
ing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice
density operators decay exponentially.@S0163-1829~99!12135-0#
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Recently, density correlation functions have been stud
for various multicomponent one-dimensional electron s
tems within the framework of the bosonization approach1,2

An important issue raised in these works is the ques
whether or not these correlators exhibit a power-law beh
ior at large distances in the presence of a Mott-Hubbard
~see also Refs. 3 and 4!. For the particular case of the ha
filled, one-dimensional Hubbard model a bosonization ana
sis yields the expected exponential decay, which at first s
appears to be at odds with the results obtained from
Bethe Ansatz5 ~see, e.g., Ref. 20 of Ref. 1!.

In one spatial dimension, the asymptotic behavior of c
relation functions can be analyzed by means of the Be
Ansatz/conformal field theory~BA/CFT! approach. Further-
more, all possible critical dimensions can be obtained fr
the exact solution.5 Since the expansion of the lattice oper
tors in terms of the conformal fields is not known explicitl
the resulting expressions contain unknown amplitudes
particular, the leading term in the BA/CFT expression for t
correlation function under question could actually vani
This is the origin of the controversy mentioned above.
certain cases, including the one discussed here, it is pos
to resolve this issue by employing symmetry considerati
of the underlying microscopic model.

In this note, we are interested in connected correlat
functions of electron densities at half filling. Using the sele
tion rules of conservation of numbers of electrons with s
up and down, one can show from the exact solution~special-
ized to the case of zero-magnetic field! that

Gnn~ t,x!5^@n~ t,x!2^n&#@n~0,0!2^n&#&

→A1

cos~px/a0!

ux1 ivtu
1A2

x22v2t2

~x21v2t2!2
1•••, ~1!

wherev is the spin velocity,a0 is the lattice spacing andA1,2
are unspecified amplitudes that depend on the physical
rameters of the problem, i.e., interaction strength and in
general case magnetic field. Note that in Eq.~1! we have
omitted similar, subdominant terms.

We will now show that by using thefull set of selection
rules for the half-filled Hubbard model, one can establ
PRB 600163-1829/99/60~12!/8540~3!/$15.00
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that the amplitudes of all contributions to Eq.~1!, that decay
algebraically, are identically zero and that the correlator th
decays exponentially.

The Hamiltonian of the half-filled Hubbard model is o
the form

H~U !52(̂
i j &

$cis
† cj s1H.c.%1U(

i
S ni↑2

1

2D S ni↓2
1

2D .

~2!

Here cis ,cis
† are canonical annihilation and creation ope

tors for electrons with spins on site i, ni5(snis

5(scis
† cis is the number operator density for electrons.

In addition to theSU(2) invariance in the spin degrees o
freedom the Hubbard Hamiltonian on a bipartite lattice co
mutes with the generators of a secondSU(2) related to
particle-hole symmetry.6,7 In the one-dimensional case, th
local generators of thish-pairing SU(2) are

h j
15~21! j cj↑cj↓ ,

~3!

h j
25~h j

1!†, h j
z5 1

2 ~12nj !,

satisfying commutation relations@h j
6 ,h j

z#56h j
6 and

@h j
1 ,h j

2#52h j
z . Combining the two symmetries one obtain

the well-known SU(2)^ SU(2)/Z25SO(4)-symmetry of
the Hubbard model.

At half filling, the ground stateuV& is anSO(4) singlet.8,9

Denoting byn(t,x) the density operator atx5a0 j and timet
we want to determine the asymptotic behavior forj→` of
the connected correlation function

Gnn~ t,x!54^hz~ t,x!hz~0,0!&

54(
n

^Vuhz~ t,x!un&^nuhz~0,0!uV&

54(
n

exp@ i ~ent2knx!#u^nuhz~0,0#uV&u2. ~4!

Hence, the matrix elements
8540 ©1999 The American Physical Society
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^nuh1
zuV& ~5!

determine which intermediate states will contribute to
asymptotic behavior of Eq.~4!.

In the BA/CFT approach to correlation functions in int
grable models one usually proceeds as follows: Firstly,
calculates the finite-size scaling behavior of the energiesen
and momentakn of the low-lying states entering the expre
sion ~4!. Secondly, one uses the quantum numbers of
operator entering the matrix element to eliminate ‘‘incomp
ible’’ intermediate states. Finally, the CFT relation betwe
finite-size energies and scaling dimensions is used to ob
the asymptotic~power law! behavior of correlation functions
by summing over the remaining low-lying intermedia
states.

In Ref. 5 only particle numbers for spin-s electrons were
used in the second step. This corresponds to taking into
count only quantum numbers associated with the Cartan
eratorsSz and hz but not those with the total spinsSW 2 and
hW 2. As a result, one obtains Eq.~1!, which seems to indicate
that Gnn decays algebraically for large distances in spite
the presence of a charge gap at half filling. We will no
show, by considering thefull set of SO(4) quantum num-
bers, that only intermediate states with a gap contribute
Eq. ~5! and the density correlations decay exponentially.

Let us calculate the totalh-spin quantum number of th
stateh1

zuV&: using the commutation relations between t
h-pairing operators@and the fact thatuV& is a singlet under
the h-pairing SU~2!# one easily obtains

hW 2~h1
zuV&)5@hW 2,h1

z#uV&52~h1
zuV&), ~6!

showing that this state is a triplet of theh-pairingSU(2). As
a consequence, only intermediate states that areh-pairing
triplets can contribute to the correlation function~4!.

As is well known onlypurespin excitations are gapless
the repulsive half-filled Hubbard model. However, these
all singlets of theh-pairing SU(2).9 Therefore the corre-
sponding matrix elements~5! vanish identically and canno
contribute inGnn . We conclude that the lowest energy i
termediate states with nonzero matrix elements~5! are
holon-antiholon scattering states with energy above
Mott-Hubbard gap. As a result the density-density corre
tion function exhibits exponential decay at large distan
for any positiveU

Gnn~ t,x!→exp~2ax!, x→`. ~7!

The determination ofa(U) is an interesting open problem
On general grounds we expect it to be proportional to
holon gap, which is given by10,11 ~see also Ref. 12!
,
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D~U !5
U

2
2214(

n51

`

~21!n@A11~nU/2!22nU/2#

;
4

p
AU exp~22p/U !, for U→0. ~8!

If one considers correlation functions of ‘‘point-split’
densities such asNj

(ps)5(scj s
† cj 11,s the above symmetry

argument does not imply the vanishing of, e.g., the ma
element̂ STuN(ps)(0,0)u0&, whereuST& denotes a spin-triple
excitation.13 Given that symmetry does not force such mat
elements to vanish we expect them to be nonzero, which t
immediately implies an algebraic decay like in Eq.~1!.

We emphasize, that to establish the exponential deca
Gnn in the above way it is essential that:~1! There is anexact
symmetry in the charge sector of the microscopic Ham
tonian~2!. In general this symmetry may not be obvious~as
is the case for the Hubbard model!. ~2! The ground state is a
singlet of the corresponding algebra. Note that the ab
considerations still hold in the presence of a magnetic fi
as the ground state~in the half-filled band! remains a singlet
of the h-pairing SU~2!. ~3! All charged~nonsinglet! excita-
tions are gapped.

We note that these conditions are fulfilled for the ha
filled Hubbard model on a bipartite lattice inanydimension,
provided thatU is larger than the critical Mott-Hubbard
value.8

Analogous conclusions can be reached for spin-spin c
relations in theattractiveHubbard model by employing dis
crete symmetries of the Hamiltonian~2!. Under the particle-
hole transformation for spin up

cj ,↑→~21! j cj ,↑
† , cj ,↓→cj ,↓ ~9!

the Hamiltonian ~2! transforms according toH(U)
→H(2U), whereash-pairing and spin SU~2! symmetries
are interchangedSa↔ha, a51,2,z. Furthermore, the
ground state of the attractive Hubbard model is a spin s
glet. This implies that spin-spin correlation functions in t
attractive Hubbard model decay exponentially at large d
tances

^Sz~ t,x!Sz~0,0!&→exp~2bx!, x→`, ~10!

whereb.0 for anyU,0.
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