366 research outputs found
The role of fisheries data in the development evaluation and impact assessment in support of European fisheries plans
The European Commission has two formal requirements for developing multi-annual management plan policies: evaluation of the past performance of existing plans and impact assessments (IAs) of the potential benefits of new proposals. The new policies require the evaluation of fishery management in terms of three specific criteria: (i) effectiveness, i. e. the best method to achieve the objectives; (ii) efficiency, the cost-effectiveness, and proportionality; and (iii) consistency, i. e. limiting trade-offs across economic, social, and environmental domains. To develop policy, there is a need to collect relevant information, then to conduct appropriate analyses that provide documentation to support the policy objectives. This paper discusses the data requirements for good environmental, economic, and social understanding of fishery dynamics and management, describing how fishery data are currently linked to the analytical and management evaluation process using examples from 2009 and 2010. The type of information currently used is considered, along with the timetable of data availability, and its effect on historical evaluation and IAs, which are now formally required when any changes to legislation are proposed in the European Union, including following stakeholder consultation. The possibilities and future needs for such data are discussed
Ultrahigh Vacuum Chamber for Synchrotron X-ray Diffraction from Films Adsorbed on Single-crystal Surfaces
An ultrahigh vacuum chamber has been developed for structural analysis of adsorbed films and singleâcrystal surfaces using synchrotron xâray diffraction. It is particularly well suited for investigations of physisorbed and other weakly bound films. The chamber is small enough to transport and mount directly on a standard fourâaxis diffractometer and can also be used independently of the xâray diffractometer. A lowâcurrent, pulseâcounting, lowâenergy electron diffraction/Auger spectroscopy system with a positionâsensitive detector enables in situ characterization of the film and substrate while the sample is located at the xâray scattering position. A closedâcycle He refrigerator and electron bombardment heater provide controlled substrate temperatures from 30 to 1300 K. The chamber is also equipped with an ion sputter gun, a quadrupole mass spectrometer, and a gas handling system. Details of the design and operation of the instrument are described. To demonstrate the performance of the instrument, we present some preliminary results of a study of Xe physisorbed on the Ag(111) surface
The structural properties of the multi-layer graphene/4H-SiC(000-1) system as determined by Surface X-ray Diffraction
We present a structural analysis of the multi-layer graphene-4HSiC(000-1})
system using Surface X-Ray Reflectivity. We show for the first time that
graphene films grown on the C-terminated (000-1}) surface have a
graphene-substrate bond length that is very short (0.162nm). The measured
distance rules out a weak Van der Waals interaction to the substrate and
instead indicates a strong bond between the first graphene layer and the bulk
as predicted by ab-initio calculations. The measurements also indicate that
multi-layer graphene grows in a near turbostratic mode on this surface. This
result may explain the lack of a broken graphene symmetry inferred from
conduction measurements on this system [C. Berger et al., Science 312, 1191
(2006)].Comment: 9 pages with 6 figure
Raman micro-spectroscopy as a tool to measure the absorption coefficient and the erosion rate of hydrogenated amorphous carbon films heat-treated under hydrogen bombardment
We present a fast and simple way to determine the erosion rate and absorption
coefficient of hydrogenated amorphous carbon films exposed to a hydrogen atomic
source based on ex-situ Raman micro-spectroscopy. Results are compared to
ellipsometry measurement. The method is applied to films eroded at different
temperatures. A maximum of the erosion rate is found at ~ 450 {\degree}C in
agreement with previous results. This technique is suitable for future
quantitative studies on the erosion of thin carbonaceous films, especially of
interest for plasma wall interactions occurring in thermonuclear fusion
devices
Dynamic fuel retention in tokamak wall materials: An in situ laboratory study of deuterium release from polycrystalline tungsten at room temperature
International audienceRetention of deuterium ion implanted in polycrystalline tungsten samples is studied in situ in an ultra-high vacuum apparatus equipped with a low-flux ion source and a high sensitivity thermo-desorption setup. Retention as a function of ion fluence was measured in the 10^17 -10^21 D+/m^2 range. By combining this new fluence range with the literature in situ experimental data, we evidence the existence of a retention = fluence^ 0.645±0.025 relationship which describes deuterium retention behavior on polycrystalline tungsten on 8 orders of magnitude of fluence. Evolution of deuterium retention as a function of the sample storage time in vacuum at room temperature was followed. A loss of 50% of the retained deuterium is observed when the storage time is increased from 2 h to 135 h. The role of the surface and of natural bulk defects on the deuterium retention/release in polycrystalline tungsten is discussed in light of the behavior of the single desorption peak obtained with Temperature Programmed Desorption
Raman study of CFC tiles extracted from the toroidal pump limiter of Tore Supra
International audienceThe structure of six tiles extracted from the erosion and deposition zones (thin and thick deposition) of the Tore Supra toroidal pump limiter (TPL) have been analysed in the framework of the DITS campaign using micro-Raman spectroscopy. This post-mortem analysis gives information on both carbon structure and D content. We have found that the carbon structure is most often similar to that of plasma-deposited hard amorphous carbon layers. The role of the surface temperature during the discharge in the D content is investigated: in all locations where the temperature does not reach more than 500°C the D content seems to be roughly uniform with D/D+C â 20%
Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.
Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche
- âŠ