224 research outputs found
Chaotic Scattering in the Regime of Weakly Overlapping Resonances
We measure the transmission and reflection amplitudes of microwaves in a
resonator coupled to two antennas at room temperature in the regime of weakly
overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz
the resonator simulates a chaotic quantum system. The distribution of the
elements of the scattering matrix S is not Gaussian. The Fourier coefficients
of S are used for a best fit of the autocorrelation function if S to a
theoretical expression based on random--matrix theory. We find very good
agreement below but not above 10.1 GHz
Characterization of Fluctuations of Impedance and Scattering Matrices in Wave Chaotic Scattering
In wave chaotic scattering, statistical fluctuations of the scattering matrix
and the impedance matrix depend both on universal properties and on
nonuniversal details of how the scatterer is coupled to external channels. This
paper considers the impedance and scattering variance ratios, and
, where ,
, and denotes
variance. is shown to be a universal function of distributed losses
within the scatterer. That is, is independent of nonuniversal coupling
details. This contrasts with for which universality applies only in the
large loss limit. Explicit results are given for for time reversal
symmetric and broken time reversal symmetric systems. Experimental tests of the
theory are presented using data taken from scattering measurements on a chaotic
microwave cavity.Comment: 6 pages, 5 figures, updated with referees' comment
Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators
Topological crystalline insulators in IV-VI compounds host novel topological
surface states consisting of multi-valley massless Dirac fermions at low
energy. Here we show that strain generically acts as an effective gauge field
on these Dirac fermions and creates pseudo-Landau orbitals without breaking
time-reversal symmetry. We predict the realization of this phenomenon in IV-VI
semiconductor heterostructures, due to a naturally occurring misfit dislocation
array at the interface that produces a periodically varying strain field.
Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of
the Dirac point, and coexist with a network of snake states at higher energy.
We propose that the high density of states of this flat band gives rise to
interface superconductivity observed in IV-VI semiconductor multilayers at
unusually high temperatures, with non-BCS behavior. Our work demonstrates a new
route to altering macroscopic electronic properties to achieve a partially flat
band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic
Nuclear Octupole Correlations and the Enhancement of Atomic Time-Reversal Violation
We examine the time-reversal-violating nuclear ``Schiff moment'' that induces
electric dipole moments in atoms. After presenting a self-contained derivation
of the form of the Schiff operator, we show that the distribution of Schiff
strength, an important ingredient in the ground-state Schiff moment, is very
different from the electric-dipole-strength distribution, with the Schiff
moment receiving no strength from the giant dipole resonance in the
Goldhaber-Teller model. We then present shell-model calculations in light
nuclei that confirm the negligible role of the dipole resonance and show the
Schiff strength to be strongly correlated with low-lying octupole strength.
Next, we turn to heavy nuclei, examining recent arguments for the strong
enhancement of Schiff moments in octupole-deformed nuclei over that of 199Hg,
for example. We concur that there is a significant enhancement while pointing
to effects neglected in previous work (both in the octupole-deformed nuclides
and 199Hg) that may reduce it somewhat, and emphasizing the need for
microscopic calculations to resolve the issue. Finally, we show that static
octupole deformation is not essential for the development of collective Schiff
moments; nuclei with strong octupole vibrations have them as well, and some
could be exploited by experiment.Comment: 25 pages, 4 figures embedded in tex
Signatures of the correlation hole in total and partial cross sections
In a complex scattering system with few open channels, say a quantum dot with
leads, the correlation properties of the poles of the scattering matrix are
most directly related to the internal dynamics of the system. We may ask how to
extract these properties from an analysis of cross sections. In general this is
very difficult, if we leave the domain of isolated resonances. We propose to
consider the cross correlation function of two different elastic or total cross
sections. For these we can show numerically and to some extent also
analytically a significant dependence on the correlations between the
scattering poles. The difference between uncorrelated and strongly correlated
poles is clearly visible, even for strongly overlapping resonances.Comment: 25 pages, 13 Postscript figures, typos corrected and references adde
Single- and double-beta decay Fermi-transitions in an exactly solvable model
An exactly solvable model suitable for the description of single and
double-beta decay processes of the Fermi-type is introduced. The model is
equivalent to the exact shell-model treatment of protons and neutrons in a
single j-shell. Exact eigenvalues and eigenvectors are compared to those
corresponding to the hamiltonian in the quasiparticle basis (qp) and with the
results of both the standard quasiparticle random phase approximation (QRPA)
and the renormalized one (RQRPA). The role of the scattering term of the
quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with
zero energy is shown to be related to the collapse of the QRPA. The RQRPA and
the qp solutions do not include this zero-energy eigenvalue in their spectra,
probably due to spurious correlations. The meaning of this result in terms of
symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to
Physcal Review
Gain Components in Autler-Townes Doublet from Quantum Interferences in Decay Channels
We consider non-degenerate pump-probe spectroscopy of V-systems under
conditions such that interference among decay channels is important. We
demonstrate how this interference can result in new gain features instead of
the usual absorption features. We relate this gain to the existence of a new
vacuum induced quasi-trapped-state. We further show how this also results in
large refractive index with low absorption.Comment: Total 8 pages, 6 figures, submitted to Physical Review
Resonance trapping and saturation of decay widths
Resonance trapping appears in open many-particle quantum systems at high
level density when the coupling to the continuum of decay channels reaches a
critical strength. Here a reorganization of the system takes place and a
separation of different time scales appears. We investigate it under the
influence of additional weakly coupled channels as well as by taking into
account the real part of the coupling term between system and continuum. We
observe a saturation of the mean width of the trapped states. Also the decay
rates saturate as a function of the coupling strength. The mechanism of the
saturation is studied in detail. In any case, the critical region of
reorganization is enlarged. When the transmission coefficients for the
different channels are different, the width distribution is broadened as
compared to a chi_K^2 distribution where K is the number of channels. Resonance
trapping takes place before the broad state overlaps regions beyond the
extension of the spectrum of the closed system.Comment: 18 pages, 8 figures, accepted by Phys. Rev.
Circulating Cell-Free DNA in Dogs with Mammary Tumors: Short and Long Fragments and Integrity Index
Circulating cell-free DNA (cfDNA) has been considered an interesting diagnostic/prognostic plasma biomarker in tumor-bearing subjects. In cancer patients, cfDNA can hypothetically derive from tumor necrosis/apoptosis, lysed circulating cells, and some yet unrevealed mechanisms of active release. This study aimed to preliminarily analyze cfDNA in dogs with canine mammary tumors (CMTs). Forty-four neoplastic, 17 non-neoplastic disease-bearing, and 15 healthy dogs were recruited. Necrosis and apoptosis were also assessed as potential source of cfDNA on 78 CMTs diagnosed from the 44 dogs. The cfDNA fragments and integrity index significantly differentiated neoplastic versus non-neoplastic dogs (P<0.05), and allowed the distinction between benign and malignant lesions (P<0.05). Even if without statistical significance, the amount of cfDNA was also affected by tumor necrosis and correlated with tumor size and apoptotic markers expression. A significant (P<0.01) increase of Bcl-2 in malignant tumors was observed, and in metastatic CMTs the evasion of apoptosis was also suggested. This study, therefore, provides evidence that cfDNA could be a diagnostic marker in dogs carrying mammary nodules suggesting that its potential application in early diagnostic procedures should be further investigated
Can we Rationally Learn to Coordinate?
In this paper we examine the issue whether individual rationality considerations are sufficient to guarantee that individuals will learn to coordinate. This question is central in any discussion of whether social phenomena (read: conventions) can be explained in terms of a purely individualistic approach. We argue that the positive answers to this general question that have been obtained in some recent work require assumptions which incorporate some convention. This conclusion may be seen as supporting the viewpoint of institutional individualism in contrast to psychological individualism
- …