14,974 research outputs found
Radiation induced zero-resistance states: a dressed electronic structure effect
Recent results on magnetoresistance in a two dimensional electron gas under
crossed magnetic and microwave fields show a new class of oscillations,
suggesting a new kind of zero-resistance states. A complete understanding of
the effect is still lacking. We consider the problem from the point of view of
the electronic structure dressed by photons due to a in plane linearly
polarized ac field. The dramatic changes in the dressed electronic structure
lead to a interpretation of the new magnetoresistance oscillations as a
persistent-current like effect, induced by the radiation field.Comment: 5 pages, 5 figures, revtex4, changes in introduction and added
reference
Neutrino mixing and masses in a left-right model with mirror fermions
In the framework of a left-right model containing mirror fermions with gauge
group SU(3),
we estimate the neutrino masses, which are found to be consistent with their
experimental bounds and hierarchy. We evaluate the decay rates of the Lepton
Flavor Violation (LFV) processes , and . We obtain upper limits for the
flavor-changing branching ratios in agreement with their present experimental
bounds. We also estimate the decay rates of heavy Majorana neutrinos in the
channels , and , which are roughly equal for large values of the heavy
neutrino mass. Starting from the most general Majorana neutrino mass matrix,
the smallness of active neutrino masses turns out from the interplay of the
hierarchy of the involved scales and the double application of seesaw
mechanism. An appropriate parameterization on the structure of the neutrino
mass matrix imposing a symmetric mixing of electron neutrino with muon and tau
neutrinos leads to Tri-bimaximal mixing matrix for light neutrinos.Comment: Accepted by European Physical Journal
Evidence of secondary relaxations in the dielectric spectra of ionic liquids
We investigated the dynamics of a series of room temperature ionic liquids
based on the same 1-butyl-3-methyl imidazolium cation and different anions by
means of broadband dielectric spectroscopy covering 15 decades in frequency
(10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An
ionic conductivity is observed above the glass transition temperature T_{g}
with a relaxation in the electric modulus representation. Below T_{g}, two
relaxation processes appear, with the same features as the secondary
relaxations typically observed in molecular glasses. The activation energy of
the secondary processes and their dependence on the anion are different. The
slower process shows the characteristics of an intrinsic Johari-Goldstein
relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found,
as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let
Methodology for determining optimized traffic light cycles based on simulation
In large urbanized cities, a major problem that affects the economy and health of all citizens is vehicular congestion. This is because the traffic light cycles are not adequate. In the present study, we seek to optimize traffic light cycles based on simulation, in order to improve vehicle flow. For this, the PTV Vissim 9.0 software was used as a simulator and the Synchro 10.0 software to determine the initial optimal traffic light cycle. Through several runs and having as variables the length of queues, delay times and the average speed, the optimal traffic light cycle could be found for the study area. The results obtained reflect a 14% reduction in delay times and 10% in queue lengths. On the other hand, the average vehicle speed increased by 10.56%. All this represents an improvement in the service level of the study intersections
Effect of Charged Scalar Loops on Photonic Decays of a Fermiophobic Higgs
Higgs bosons with very suppressed couplings to fermions ("Fermiophobic Higgs
bosons", h_f) can decay to two photons (\gamma\gamma) with a branching ratio
significantly larger than that expected for the Standard Model Higgs boson for
m_{h_f}<150 GeV. Such a particle would give a clear signal at the LHC and can
arise in the Two Higgs Doublet Model (type I) in which h_f -> \gamma\gamma is
mediated by W^+ and charged Higgs boson (H^+) loops. We show that the H^+ loops
can cause both constructive and destructive contributions with a magnitude
considerably larger than the anticipated precision in the measurement of the
photonic decay channel at future hadron and lepton colliders.Comment: 18 pages, 5 figures, clarifications added, one reference added,
accepted by Physical Review
Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network
In this study, an artificial neural network (ANN) based on particle swarm
optimization (PSO) was developed for the time series prediction. The hybrid
ANN+PSO algorithm was applied on Mackey--Glass chaotic time series in the
short-term . The performance prediction was evaluated and compared with
another studies available in the literature. Also, we presented properties of
the dynamical system via the study of chaotic behaviour obtained from the
predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with
a Gaussian stochastic procedure (called {\it stochastic} hybrid ANN+PSO) in
order to obtain a new estimator of the predictions, which also allowed us to
compute uncertainties of predictions for noisy Mackey--Glass chaotic time
series. Thus, we studied the impact of noise for several cases with a white
noise level () from 0.01 to 0.1.Comment: 11 pages, 8 figure
- …