14,974 research outputs found

    Radiation induced zero-resistance states: a dressed electronic structure effect

    Get PDF
    Recent results on magnetoresistance in a two dimensional electron gas under crossed magnetic and microwave fields show a new class of oscillations, suggesting a new kind of zero-resistance states. A complete understanding of the effect is still lacking. We consider the problem from the point of view of the electronic structure dressed by photons due to a in plane linearly polarized ac field. The dramatic changes in the dressed electronic structure lead to a interpretation of the new magnetoresistance oscillations as a persistent-current like effect, induced by the radiation field.Comment: 5 pages, 5 figures, revtex4, changes in introduction and added reference

    Neutrino mixing and masses in a left-right model with mirror fermions

    Full text link
    In the framework of a left-right model containing mirror fermions with gauge group SU(3)C⊗SU(2)L⊗SU(2)R⊗U(1)Y′_{C} \otimes SU(2)_{L} \otimes SU(2)_{R} \otimes U(1)_{Y^\prime}, we estimate the neutrino masses, which are found to be consistent with their experimental bounds and hierarchy. We evaluate the decay rates of the Lepton Flavor Violation (LFV) processes μ→eγ\mu \rightarrow e \gamma, τ→μγ\tau \rightarrow \mu \gamma and τ→eγ\tau \rightarrow e\gamma. We obtain upper limits for the flavor-changing branching ratios in agreement with their present experimental bounds. We also estimate the decay rates of heavy Majorana neutrinos in the channels N→W±l∓N \rightarrow W^{\pm} l^{\mp}, N→ZνlN \rightarrow Z \nu_{l} and N→HνlN \rightarrow H \nu_{l}, which are roughly equal for large values of the heavy neutrino mass. Starting from the most general Majorana neutrino mass matrix, the smallness of active neutrino masses turns out from the interplay of the hierarchy of the involved scales and the double application of seesaw mechanism. An appropriate parameterization on the structure of the neutrino mass matrix imposing a symmetric mixing of electron neutrino with muon and tau neutrinos leads to Tri-bimaximal mixing matrix for light neutrinos.Comment: Accepted by European Physical Journal

    Evidence of secondary relaxations in the dielectric spectra of ionic liquids

    Full text link
    We investigated the dynamics of a series of room temperature ionic liquids based on the same 1-butyl-3-methyl imidazolium cation and different anions by means of broadband dielectric spectroscopy covering 15 decades in frequency (10^(-6)-10^9 Hz), and in the temperature range from 400 K down to 35 K. An ionic conductivity is observed above the glass transition temperature T_{g} with a relaxation in the electric modulus representation. Below T_{g}, two relaxation processes appear, with the same features as the secondary relaxations typically observed in molecular glasses. The activation energy of the secondary processes and their dependence on the anion are different. The slower process shows the characteristics of an intrinsic Johari-Goldstein relaxation, in particular an activation energy E_{beta}=24k_{B}T_{g} is found, as observed in molecular glasses.Comment: Major revision, submitted to Phys. Rev. Let

    Methodology for determining optimized traffic light cycles based on simulation

    Get PDF
    In large urbanized cities, a major problem that affects the economy and health of all citizens is vehicular congestion. This is because the traffic light cycles are not adequate. In the present study, we seek to optimize traffic light cycles based on simulation, in order to improve vehicle flow. For this, the PTV Vissim 9.0 software was used as a simulator and the Synchro 10.0 software to determine the initial optimal traffic light cycle. Through several runs and having as variables the length of queues, delay times and the average speed, the optimal traffic light cycle could be found for the study area. The results obtained reflect a 14% reduction in delay times and 10% in queue lengths. On the other hand, the average vehicle speed increased by 10.56%. All this represents an improvement in the service level of the study intersections

    Effect of Charged Scalar Loops on Photonic Decays of a Fermiophobic Higgs

    Full text link
    Higgs bosons with very suppressed couplings to fermions ("Fermiophobic Higgs bosons", h_f) can decay to two photons (\gamma\gamma) with a branching ratio significantly larger than that expected for the Standard Model Higgs boson for m_{h_f}<150 GeV. Such a particle would give a clear signal at the LHC and can arise in the Two Higgs Doublet Model (type I) in which h_f -> \gamma\gamma is mediated by W^+ and charged Higgs boson (H^+) loops. We show that the H^+ loops can cause both constructive and destructive contributions with a magnitude considerably larger than the anticipated precision in the measurement of the photonic decay channel at future hadron and lepton colliders.Comment: 18 pages, 5 figures, clarifications added, one reference added, accepted by Physical Review

    Impact of noise on a dynamical system: prediction and uncertainties from a swarm-optimized neural network

    Get PDF
    In this study, an artificial neural network (ANN) based on particle swarm optimization (PSO) was developed for the time series prediction. The hybrid ANN+PSO algorithm was applied on Mackey--Glass chaotic time series in the short-term x(t+6)x(t+6). The performance prediction was evaluated and compared with another studies available in the literature. Also, we presented properties of the dynamical system via the study of chaotic behaviour obtained from the predicted time series. Next, the hybrid ANN+PSO algorithm was complemented with a Gaussian stochastic procedure (called {\it stochastic} hybrid ANN+PSO) in order to obtain a new estimator of the predictions, which also allowed us to compute uncertainties of predictions for noisy Mackey--Glass chaotic time series. Thus, we studied the impact of noise for several cases with a white noise level (σN\sigma_{N}) from 0.01 to 0.1.Comment: 11 pages, 8 figure
    • …
    corecore