3,201 research outputs found

    Flux Qubits and Readout Device with Two Independent Flux Lines

    Full text link
    We report measurements on two superconducting flux qubits coupled to a readout Superconducting QUantum Interference Device (SQUID). Two on-chip flux bias lines allow independent flux control of any two of the three elements, as illustrated by a two-dimensional qubit flux map. The application of microwaves yields a frequency-flux dispersion curve for 1- and 2-photon driving of the single-qubit excited state, and coherent manipulation of the single-qubit state results in Rabi oscillations and Ramsey fringes. This architecture should be scalable to many qubits and SQUIDs on a single chip.Comment: 5 pages, 4 figures, higher quality figures available upon request. Submitted to PR

    A Simple, Quick, and Precise Procedure for the Determination of Water in Organic Solvents

    Get PDF
    A procedure for the UV/VIS-spectroscopic determination of water by the use of a solvatochromic pyridiniumphenolate betaine is given. The water content of organic solvents is calculated by a two parameter equation from λmax of the dye. A typical, detection limit is of the order of 1 mg in 1 ml solvent for routine spectrometers. The parameters for the determination of water are given for a number of commonly used solvents

    Fault-Tolerant Thresholds for Encoded Ancillae with Homogeneous Errors

    Full text link
    I describe a procedure for calculating thresholds for quantum computation as a function of error model given the availability of ancillae prepared in logical states with independent, identically distributed errors. The thresholds are determined via a simple counting argument performed on a single qubit of an infinitely large CSS code. I give concrete examples of thresholds thus achievable for both Steane and Knill style fault-tolerant implementations and investigate their relation to threshold estimates in the literature.Comment: 14 pages, 5 figures, 3 tables; v2 minor edits, v3 completely revised, submitted to PR

    Quantum error correction benchmarks for continuous weak parity measurements

    Full text link
    We present an experimental procedure to determine the usefulness of a measurement scheme for quantum error correction (QEC). A QEC scheme typically requires the ability to prepare entangled states, to carry out multi-qubit measurements, and to perform certain recovery operations conditioned on measurement outcomes. As a consequence, the experimental benchmark of a QEC scheme is a tall order because it requires the conjuncture of many elementary components. Our scheme opens the path to experimental benchmarks of individual components of QEC. Our numerical simulations show that certain parity measurements realized in circuit quantum electrodynamics are on the verge of being useful for QEC

    Improved magic states distillation for quantum universality

    Full text link
    Given stabilizer operations and the ability to repeatedly prepare a single-qubit mixed state rho, can we do universal quantum computation? As motivation for this question, "magic state" distillation procedures can reduce the general fault-tolerance problem to that of performing fault-tolerant stabilizer circuits. We improve the procedures of Bravyi and Kitaev in the Hadamard "magic" direction of the Bloch sphere to achieve a sharp threshold between those rho allowing universal quantum computation, and those for which any calculation can be efficiently classically simulated. As a corollary, the ability to repeatedly prepare any pure state which is not a stabilizer state (e.g., any single-qubit pure state which is not a Pauli eigenstate), together with stabilizer operations, gives quantum universality. It remains open whether there is also a tight separation in the so-called T direction.Comment: 6 pages, 5 figure

    Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

    Full text link
    Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.Comment: 31 pages, 3 figures, 1 table. Includes main text and supporting material. This is the accepted version of the manuscript (the definitive version appeared in Science), with typographical corrections included her

    On fault-tolerance with noisy and slow measurements

    Full text link
    It is not so well-known that measurement-free quantum error correction protocols can be designed to achieve fault-tolerant quantum computing. Despite the potential advantages of using such protocols in terms of the relaxation of accuracy, speed and addressing requirements on the measurement process, they have usually been overlooked because they are expected to yield a very bad threshold as compared to error correction protocols which use measurements. Here we show that this is not the case. We design fault-tolerant circuits for the 9 qubit Bacon-Shor code and find a threshold for gates and preparation of p(p,g)thresh=3.76×105p_{(p,g) thresh}=3.76 \times 10^{-5} (30% of the best known result for the same code using measurement based error correction) while admitting up to 1/3 error rates for measurements and allocating no constraints on measurement speed. We further show that demanding gate error rates sufficiently below the threshold one can improve the preparation threshold to p(p)thresh=1/3p_{(p)thresh} = 1/3. We also show how these techniques can be adapted to other Calderbank-Shor-Steane codes.Comment: 11 pages, 7 figures. v3 has an extended exposition and several simplifications that provide for an improved threshold value and resource overhea

    Exponential complexity of an adiabatic algorithm for an NP-complete problem

    Full text link
    We prove an analytical expression for the size of the gap between the ground and the first excited state of quantum adiabatic algorithm for the 3-satisfiability, where the initial Hamiltonian is a projector on the subspace complementary to the ground state. For large problem sizes the gap decreases exponentially and as a consequence the required running time is also exponential.Comment: 5 pages, 2 figures; v3. published versio

    Single-qubit unitary gates by graph scattering

    Full text link
    We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to n=9n=9 vertices for which the scattering implements a single-qubit gate. As nn increases, the number of new unitary operations increases exponentially, and for n>6n>6 the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of π\pi are found.Comment: 8 pages, 7 figure

    A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states

    Full text link
    We prove that universal quantum computation is possible using only (i) the physically natural measurement on two qubits which distinguishes the singlet from the triplet subspace, and (ii) qubits prepared in almost any three different (potentially highly mixed) states. In some sense this measurement is a `more universal' dynamical element than a universal 2-qubit unitary gate, since the latter must be supplemented by measurement. Because of the rotational invariance of the measurement used, our scheme is robust to collective decoherence in a manner very different to previous proposals - in effect it is only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous middle name [12
    corecore