13,895 research outputs found

    Quantum interference and entanglement induced by multiple scattering of light

    Get PDF
    We report on the effects of quantum interference induced by transmission of an arbitrary number of optical quantum states through a multiple scattering medium. We identify the role of quantum interference on the photon correlations and the degree of continuous variable entanglement between two output modes. It is shown that the effect of quantum interference survives averaging over all ensembles of disorder and manifests itself as increased photon correlations giving rise to photon anti-bunching. Finally, the existence of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our results suggest that multiple scattering provides a promising way of coherently interfering many independent quantum states of light of potential use in quantum information processing.Comment: 5 pages including 4 figure

    New H_(2)O masers in Seyfert and FIR bright galaxies: III. The southern sample

    Get PDF
    Context. A relationship between the water maser detection rate and far infrared (FIR) flux densities was established as a result of two 22 GHz maser surveys in a complete sample of galaxies (Dec > −30°) with flux densities of >50 Jy and >30 Jy. Aims. We attempted to discover new maser sources and investigate the galaxies hosting the maser spots by extending previous surveys to southern galaxies with particular emphasis on the study of their nuclear regions. Methods. A sample of 12 galaxies with Dec 50 Jy was observed with the 70-m telescope of the Canberra deep space communication complex (CDSCC) at Tidbinbilla (Australia) in a search for water maser emission. The average 3σ noise level of the survey was 15 mJy for a 0.42 km s^(−1) channel, corresponding to a detection threshold of ∼0.1 L_☉ for the isotropic maser luminosity at a distance of 25 Mpc. Results. Two new detections are reported: a kilomaser with an isotropic luminosity L_(H_(2)O) ~ 5 L_☉ in NGC 3620 and a maser with about twice this luminosity in the merger system NGC 3256. The detections have been followed-up by continuum and spectral line interferometric observations with the Australia Telescope Compact Array (ATCA). In NGC 3256, a fraction (about a third) of the maser emission originates in two hot spots associated with star formation activity, which are offset from the galactic nuclei of the system. The remaining emission may originate in weaker centres of maser activity distributed over the central 50". For NGC 3620, the water maser is coincident with the nuclear region of the galaxy. Our continuum observations indicate that the nature of the nuclear emission is probably linked to particularly intense star formation. Including the historical detection in NGC 4945, the water maser detection rate in the southern sample is 15% (3/20), consistent with the northern sample. The high rate of maser detections in the complete all-sky FIR sample (23%, 15/65) confirms the existence of a link between overall FIR flux density and maser phenomena. A relation between H_(2)O and OH masers in the FIR sample is also discussed

    Renormalization of the periodic Anderson model: an alternative analytical approach to heavy Fermion behavior

    Full text link
    In this paper a recently developed projector-based renormalization method (PRM) for many-particle Hamiltonians is applied to the periodic Anderson model (PAM) with the aim to describe heavy Fermion behavior. In this method high-energetic excitation operators instead of high energetic states are eliminated. We arrive at an effective Hamiltonian for a quasi-free system which consists of two non-interacting heavy-quasiparticle bands. The resulting renormalization equations for the parameters of the Hamiltonian are valid for large as well as small degeneracy νf\nu_f of the angular momentum. An expansion in 1/νf1/\nu_f is avoided. Within an additional approximation which adapts the idea of a fixed renormalized \textit{f} level ϵ~f\tilde{\epsilon}_{f}, we obtain coupled equations for ϵ~f\tilde{\epsilon}_{f} and the averaged \textit{f} occupation . These equations resemble to a certain extent those of the usual slave boson mean-field (SB) treatment. In particular, for large νf\nu_f the results for the PRM and the SB approach agree perfectly whereas considerable differences are found for small νf\nu_f.Comment: 26 pages, 5 figures included, discussion of the DOS added in v2, accepted for publication in Phys. Rev.

    New attempts to understand nanodiamond stardust

    Get PDF
    We report on a concerted effort aimed at understanding the origin and history of the pre-solar nanodiamonds in meteorites including the astrophysical sources of the observed isotopic abundance signatures. This includes measurement of light elements by secondary ion mass spectrometry (SIMS), analysis of additional heavy trace elements by accelerator mass spectrometry (AMS) and dynamic calculations of r-process nucleosynthesis with updated nuclear properties. Results obtained indicate: a) there is no evidence for the former presence of now extinct 26Al and 44Ti in our diamond samples other than what can be attributed to silicon carbide and other "impurities"; this does not offer support for a supernova (SN) origin but neither does it negate it; b) analysis by AMS of platinum in "bulk diamond" yields an overabundance of r-only 198Pt that at face value seems more consistent with the neutron burst than with the separation model for the origin of heavy trace elements in the diamonds, although this conclusion is not firm given analytical uncertainties; c) if the Xe-H pattern was established by an unadulterated r-process, it must have been a strong variant of the main r-process, which possibly could also account for the new observations in platinum.Comment: Workshop on Astronomy with Radioactvities VII; Publications of the Astronomical Society of Australia, accepte

    Ultracold Atoms as a Target: Absolute Scattering Cross-Section Measurements

    Full text link
    We report on a new experimental platform for the measurement of absolute scattering cross-sections. The target atoms are trapped in an optical dipole trap and are exposed to an incident particle beam. The exponential decay of the atom number directly yields the absolute total scattering cross-section. The technique can be applied to any atomic or molecular species that can be prepared in an optical dipole trap and provides a large variety of possible scattering scenarios

    Quantifying Spatiotemporal Chaos in Rayleigh-B\'enard Convection

    Full text link
    Using large-scale parallel numerical simulations we explore spatiotemporal chaos in Rayleigh-B\'enard convection in a cylindrical domain with experimentally relevant boundary conditions. We use the variation of the spectrum of Lyapunov exponents and the leading order Lyapunov vector with system parameters to quantify states of high-dimensional chaos in fluid convection. We explore the relationship between the time dynamics of the spectrum of Lyapunov exponents and the pattern dynamics. For chaotic dynamics we find that all of the Lyapunov exponents are positively correlated with the leading order Lyapunov exponent and we quantify the details of their response to the dynamics of defects. The leading order Lyapunov vector is used to identify topological features of the fluid patterns that contribute significantly to the chaotic dynamics. Our results show a transition from boundary dominated dynamics to bulk dominated dynamics as the system size is increased. The spectrum of Lyapunov exponents is used to compute the variation of the fractal dimension with system parameters to quantify how the underlying high-dimensional strange attractor accommodates a range of different chaotic dynamics

    Exact Results for the Kuramoto Model with a Bimodal Frequency Distribution

    Full text link
    We analyze a large system of globally coupled phase oscillators whose natural frequencies are bimodally distributed. The dynamics of this system has been the subject of long-standing interest. In 1984 Kuramoto proposed several conjectures about its behavior; ten years later, Crawford obtained the first analytical results by means of a local center manifold calculation. Nevertheless, many questions have remained open, especially about the possibility of global bifurcations. Here we derive the system's complete stability diagram for the special case where the bimodal distribution consists of two equally weighted Lorentzians. Using an ansatz recently discovered by Ott and Antonsen, we show that in this case the infinite-dimensional problem reduces exactly to a flow in four dimensions. Depending on the parameters and initial conditions, the long-term dynamics evolves to one of three states: incoherence, where all the oscillators are desynchronized; partial synchrony, where a macroscopic group of phase-locked oscillators coexists with a sea of desynchronized ones; and a standing wave state, where two counter-rotating groups of phase-locked oscillators emerge. Analytical results are presented for the bifurcation boundaries between these states. Similar results are also obtained for the case in which the bimodal distribution is given by the sum of two Gaussians.Comment: 28 pages, 7 figures; submitted to Phys. Rev. E Added comment
    • …
    corecore