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We report on the effects of quantum interference induced by the transmission of an arbitrary number of

optical quantum states through a multiple-scattering medium. We identify the role of quantum interfer-

ence on the photon correlations and the degree of continuous variable entanglement between two output

modes. It is shown that quantum interference survives averaging over all ensembles of disorder and

manifests itself as increased photon correlations due to photon antibunching. Furthermore, the existence

of continuous variable entanglement correlations in a volume speckle pattern is predicted. Our results

suggest that multiple scattering provides a promising way of coherently interfering many independent

quantum states of light of potential use in quantum information processing.
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Studies of wave propagation in disordered media have
revealed a range of fascinating wave phenomena, including
Anderson localization [1], enhanced coherent back scatter-
ing [2], and universal conductance fluctuations [3]. These
mesoscopic phenomena originate from wave interference
and appear after averaging over all configurations of dis-
order [4,5]. Mesoscopic effects are common to a large class
of elastic wave problems, including transport of electrons
through artificial nanostructures, advancement of sound
waves in turbulent fluids, and light propagation through
complex dielectric media.

While much attention has been devoted to propagation
of classical light waves through random media over the
years, the influence of the quantum nature of light has only
recently become an active field of research. The develop-
ment of a theoretical framework to handle multiple scat-
tering in quantum optics [6,7] triggered the interest in
understanding quantum optical properties of disordered
media [6–15]. Studies include quantum noise properties
[6,8], absorbing or amplifying media [7], degradation of
polarization entanglement [9], and spatial photon correla-
tions [11–15]. Recently it was shown experimentally that
light-matter interaction is strongly enhanced in disordered
photonic crystal waveguides, enabling cavity quantum
electrodynamics with Anderson-localized modes [16].
Optical quantum information processing schemes rely on
interference among multiple independent quantum states,
i.e., quantum interference (QI), to generate quantum cor-
relations and entanglement. The possibility of using
multiple-scattering media to interfere independent quan-
tum states is appealing since it is inherently scalable to
multiple input states. To this end, mesoscopic quantum
interference effects that persist even after averaging over
all ensembles of disorder, would be required in order to
obtain robust and predictable quantum correlations. So far,
interference of quantum light in a scattering medium has
only been described in 1D random walk models [14] or for
diffusive transport where interference effects wash out
after ensemble averaging [11,15].

In this Letter, we investigate QI induced by combining
an arbitrary number of independent quantum states in a
random multiple-scattering medium in the mesoscopic
regime. We identify the role of QI on the degree of photon
number correlations between two transmission paths
through the medium and the degree of continuous variable
entanglement. Surprisingly QI of photons is found to sur-
vive after averaging over all configurations of disorder; i.e.,
the induced quantum correlations have deterministic char-
acter despite the underlying random multiple-scattering
processes. We furthermore discuss the feasibility of experi-
mentally verifying our theoretical predictions.
Let us now introduce the model for propagation of

quantized light through a linear, elastic, multiple-scattering
medium of length L and transport mean free path ‘, see
Fig. 1. We apply the scattering matrix for the propagation
of light and use random matrix theory on the scattering
elements. The approach describes effectively a quasi-1D
model of an N-mode waveguide, but is known also to
accurately predict propagation in 3D slab geometries [5].
We relate the photon annihilation operators â� (âi) of
output (input) modes � (i) by â� ¼ P

it�iâi, where the
summation is over all N possible input modes at each end

FIG. 1. Sketch of propagation through a disordered waveguide
of length L and transport mean free path ‘. Quantized light is
incident to the left and the correlations between two different
output modes on the right are analyzed. The operators âi and â�
correspond to the annihilation operators of modes i and �, where
Roman and Greek subscripts denote input and output modes,
respectively.
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of the waveguide and t�i denotes the complex scattering
matrix element. Experimentally such a system could, e.g.,
be realized in titania powder samples [13] or disordered
photonic crystal waveguides [16,17].

As a measure of QI, we introduce the 2-channel photon
correlation function

C��¼
�n̂�n̂�
hn̂�ihn̂�i ; �n̂�n̂�¼hn̂�n̂�i�hn̂�ihn̂�i: (1)

The brackets denote quantum mechanical expectation val-

ues and n̂� ¼ ây�â� is the output photon number operator.
The degree of entanglement is quantified in terms of the
quadrature variance product (QVP) [18]

"�� ¼ �ðX̂� � X̂�Þ2�ðŶ� þ Ŷ�Þ2; (2)

where X̂� ¼ 1ffiffi
2

p ðây� þ â�Þ and Ŷ� ¼ iffiffi
2

p ðây� � â�Þ are

quadrature operators. The QVP determines the ability to
predict a measurement in mode � given the result of a
measurement on mode �, and for "�� < 1 (>1) the out-

come is predictable below (above) the quantum noise limit.
"�� < 1 implies that the quantum state of the two output

modes � and � is unseparable, i.e., entangled [18].
Equations (1) and (2) can conveniently be evaluated

diagrammatically, by representing the propagator t�iâi by
an arrow connecting input mode i to output mode �. Since

the scattering matrix is unitary, t��iâ
y
i represents the time-

reversed path. For example, considering two input modes,
evaluating Eq. (1) yields 24 different terms of the form

t��it��jt�kt�lhâyi âyj âkâli. Three typical diagrams are shown

in Fig. 2. As an example, the contribution from diagram (a)
is jt�ij2jt�ij2h: n̂2i :i, where h: � � � :i denotes normal order-

ing. The diagrams can be classified into intensity and
interference diagrams. The former correspond to incoher-
ent addition of the intensities associated with the different
propagation paths through the medium, as it is the case for
the diagrams (a) and (b). The latter give rise to QI between
the input states and diagram (c) is such an example. We
note that all additional diagrams not shown in Fig. 2 are
interference diagrams and only the three shown diagrams
survive ensemble averaging.

For diffusive transport the intensity transmission coef-
ficients are exponentially distributed while the phase is
uniformly distributed [19]; i.e., the system can be simu-

lated exactly. To be specific, we choose a waveguide of
N ¼ 102 so that the average single-channel transmission is
� ¼ g=N2 ¼ 1=300 [20], where g is the normalized aver-
age conductance. We keep output mode � fixed while
varying output mode � in a 10 by 10 grid to represent
spatial wave vectors in the transverse plane (kx, ky). We

evaluate the 2-channel photon correlation function be-
tween the two output modes, � and �, using Fock states
jnii as input. Illuminating only a single input channel with
a two-photon Fock state j2i, C�� ¼ �1=2 for all modes �

and �, independent of the realization of disorder. For
single photons incident in two different input modes
j1; 1i the spatial photon correlations fluctuate between
�1 and 0, see Fig. 3(a). This is a manifestation of QI in
a speckle pattern as observed in Ref. [15].
We furthermore evaluate "�� for two quadrature-

squeezed input states j�ii ¼ exp½12 ��i â2 � 1
2 �iðâyÞ2�j0i,

where �i ¼ j�ijei�i contains squeezing amplitude, j�ij,
and phase, �i, [22]. We investigate two orthogonally ori-
ented squeezed beams, i.e. �1 ¼ 0 and �2 ¼ �, and
choose both incident squeezed beams to have j�ij ¼ 0:15
corresponding to experimentally obtainable parameters
[13]. For the squeezed states incident in two different
arbitrary modes we evaluate "�� between the two different

output modes � and �. This is shown in Fig. 3(b), which
visualizes that pairwise entanglement ("�� < 1) can be

induced by multiple scattering. By changing the squeezing
phases of the input states the modes that display entangle-
ment change. From knowledge of the transmission matrix
one could thus specify the modes between which the en-
tanglement should occur by changing the phases of the
squeezed beams. This could potentially be achieved with
the recent scheme to measure the complex transmission
matrix for light propagation through a disordered medium

FIG. 2. A diagrammatic representation of three terms of the
form t��it��jt�kt�lhâyi âyj âkâli. Diagrams (a) and (b) involve only

intensity transmission of the input modes while (c) shows quan-
tum interference between two input states. The three diagrams
are the only ones that survive ensemble averaging.

−0.8 −0.5 −0.2 −4 −2 0 2 4

(a) (b)

FIG. 3 (color online). (a) The 2-photon correlation C�� for
two single-photon Fock input states, j1; 1i, showing large fluc-
tuations due to quantum interference. (b) The degree of entan-
glement log10ð"��Þ for the two quadrature-squeezed input states

described in the text. The gray scale shows nonentangled states
(log10ð"��Þ � 0) while the colored areas with crosses display the

entangled states (log10ð"��Þ< 0). (a) and (b) are obtained with

the same realization of disorder for diffusive transport, where the

phase is random and Pðjt�ij2Þ ¼ expð�jt�ij2=jt�ij2Þ with

jt�ij2 ¼ � the average single-channel transmission.
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[23]. The inherent ability of a multiple-scattering medium
to mix many modes shows the scalability of the approach
of potential use in quantum information processing.

Let us next consider the effects of QI after ensemble
averaging. The averaged amplitude transmission coeffi-
cients are given by [24]

t��it�j ¼ ��ij; (3a)

t��it��jt�kt�l ¼ �2ðC1�il�jk þ C2�ik�jlÞ; (3b)

with C1 and C2 the short and long-range correlation func-
tions, respectively, and the bar denotes ensemble averag-
ing. After the ensemble averaging only loop-type diagrams
survive, i.e., only those shown in Fig. 2. The values of
diagrams (a) and (b) are proportional to C1 þ C2 and C1,
respectively, while diagram (c) is proportional to C2. This
can be intuitively understood since C1 expresses the inten-
sity fluctuations in a single speckle spot, while C2 is related
to the intensity correlations between two speckles [21].
Diagram (c) displays the QI term that survives ensemble
averaging. From the values of C2 and the normalized
average conductance g, we define the transitions from the
quasiballistic to the weakly disordered regime (C2 ¼ 0)
and from the weakly disordered to the localized regime
(g ¼ 1). The mesoscopic regime is defined as the regime in
which two speckle spots are correlated after ensemble
averaging (C2 > 0). The values of C1 and C2 depend on
the number of modesN and the degree of disorder, which is
contained in s ¼ L=‘ and g�1 [25].

We define the ensemble-averaged 2-channel correlation
function as

�C��¼
�n̂�n̂�

hn̂�ihn̂�i

¼ ðC1þC2Þ½ðPihn̂iiÞ2þ
P

ið�n̂2i �hn̂iiÞ�
C1ðPihn̂iiÞ2þC2ðPihn̂ii2þ2

P
i;j>i jhâyi âjij2Þ

�1:

(4)

The ensemble-averaged QVP is

�" �� ¼ 1þ 4�
X
i

�âyi âi þ 4�2
�
C1

�X
i

�âyi âi
�
2

þ C2

X
i;j

�âyi âj�â
y
j âi

�
: (5)

In Fig. 4 �C�� and log10ð �"��Þ are plotted versus s. For

Fock input states the s dependence of �C�� is a direct

measure of QI since disregarding the QI terms implies
that �C�� only depends on the total number of input pho-

tons. First consider having two photons incident in only
one mode, j2i, �C�� ¼ � 1

2 independent of s. With the

photons in two different input modes, j1; 1i, the correla-
tions on the contrary depend on s. Only at the transition to
the mesoscopic regime (C2 ¼ 0) we have �C�� ¼ � 1

2 . This

value corresponds to the correlation between two equally
probable output modes for two classical noninteracting

particles. This is due to two simple reasons: (i) the en-
semble averaging makes all output modes equally possible
and (ii) transport is diffusive and thus all interference
effects are washed out. As disorder is increased, �C��

increases signifying that the probability that the two pho-
tons arrive at two different positions increases although
remaining anticorrelated ( �C�� < 0). The increased corre-

lations saturate in the localized regime since C2 tends
towards C1 [21]. The variations in �C�� can be attributed

to QI amongst the input channels, which causes the pho-
tons to antibunch. The antibunching of photons originates
from the correlations between different modes induced in
the mesoscopic, and especially the Anderson-localized,
regime. Investigating three photon Fock states shows that
having more incident modes increases the effects of QI.
For j1; 1; 1i, �C�� tends towards zero in the localized re-

gime signifying that the output modes become uncorre-
lated. If the number of input modes is increased further the
output modes will become correlated ( �C�� > 0) in the

localized regime. This means that detection of a photon
in one mode on average increases the probability of the
detection of a photon in another mode, which is in striking
contrast to the behavior of diffusive transport of Fock
states. Having single-photon states in n input modes and
letting n go to infinity makes �C�� approach unity far into

the localized regime, which is the value obtained for ther-
mal light. The variation of �"�� with s is plotted as the green

dash-dotted curve in Fig. 4 for the same quadrature-
squeezed inputs as for the single realization of Fig. 3. In
the mesoscopic regime both C1 and C2 are positive and
thus �"�� � 1. The value of �"�� approaches unity in the

localized regime since the transmission decreases so that
contributions from vacuum fluctuations dominate.
Continuous variable entanglement in the transmission is
therefore predicted to vanish after ensemble averaging. We
anticipate that this might be different in the reflection due
to coherent effects as enhanced backscattering, but this is
outside the scope of the present work.
Finally, we address the experimental feasibility of the

proposal. In Fig. 4 we indicate the position of three existing
multiple-scattering structures from the literature, where the
number of modes N has been scaled to match the value
used in the calculations. Ref. [15] concerns transmission
through two scattering surfaces, which mimics a multiple-
scattering medium with s ¼ 2. This corresponds to the
diffusive limit where QI will be present in the speckle
pattern but not survive ensemble averaging. In Ref. [13]
a titania powder is used with sample length L ¼ 20 �m
and transport mean free path ‘ � 0:9 �m, which corre-
sponds to the mesoscopic regime of s > 2. Such a sample
supports a large number of modes (N > 103) and thus g �
1, which means that this type of sample is in the weakly
disordered regime where QI effects are modest, cf. Fig. 4.
This illustrates the importance of using multiple-scattering
samples supporting only few modes in order to observe QI.
A disordered multimode photonic crystal waveguide is
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exactly such a system and for N � 5 together with the
typical experimental parameters of ‘ � 20 �m and L ¼
100 �m [17] gives rise to sizeable QI effects that will be
observable in an experiment, cf. Fig. 4.

In conclusion we have theoretically predicted that sur-
prisingly QI of light survives multiple scattering even after
ensemble averaging and can be employed to mix several
input quantum states of light. By calculating the 2-channel
photon correlation function in the case of Fock input states,
we showed that the difference between one and several
input modes for a fixed number of total photons is a direct
measure of QI. We have predicted 2-channel photon anti-
bunching in the mesoscopic regime that increases with the
degree of disorder. The experimental feasibility of the
proposal was investigated based on existing multiple-
scattering samples from the literature, and we found that
multimode disordered photonic crystal waveguides are
promising candidates for an experimental demonstration.
Finally, we investigated continuous variable entanglement
induced by multiple scattering of squeezed light that was
predicted to show up in single realizations of disorder but
to vanish after ensemble averaging. Our work may provide
a promising new route to coherently combine many inde-
pendent quantum states of light that is inherently scalable
since the multiple-scattering process mixes all input states.
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