579 research outputs found

    {\beta}-YbAlB4: a critical nodal metal

    Full text link
    We propose a model for the intrinsic quantum criticality of {\beta}-YbAlB4, in which a vortex in momentum space gives rise to a new type of Fermi surface singularity. The unquenched angular momentum of the |J = 7/2,m_J = \pm5/2> Yb 4f-states generates a momentum-space line defect in the hybridization between 4f and conduction electrons, leading to a quasi-two dimensional Fermi surface with a k\perp4 dispersion and a singular density of states proportional to E^{-1/2}. We discuss the implications of this line-node in momentum space for our current understanding of quantum criticality and its interplay with topology

    A continental-scale validation of ecosystem service models

    Get PDF
    Faced with environmental degradation, governments worldwide are developing policies to safeguard ecosystem services (ES). Many ES models exist to support these policies, but they are generally poorly validated, especially at large scales, which undermines their credibility. To address this gap, we describe a study of multiple models of five ES, which we validate at an unprecedented scale against 1675 data points across sub-Saharan Africa. We find that potential ES (biophysical supply of carbon and water) are reasonably well predicted by the existing models. These potential ES models can also be used as inputs to new models for realised ES (use of charcoal, firewood, grazing resources and water), by adding information on human population density. We find that increasing model complexity can improve estimates of both potential and realised ES, suggesting that developing more detailed models of ES will be beneficial. Furthermore, in 85% of cases, human population density alone was as good or a better predictor of realised ES than ES models, suggesting that it is demand, rather than supply that is predominantly determining current patterns of ES use. Our study demonstrates the feasibility of ES model validation, even in data-deficient locations such as sub-Saharan Africa. Our work also shows the clear need for more work on the demand side of ES models, and the importance of model validation in providing a stronger base to support policies which seek to achieve sustainable development in support of human well-being

    Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots

    Get PDF
    Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a 3D co-culture of HUVEC with pericytes, it inhibited tube formation at high doses but promoted this at low doses, which confirmed its biphasic effect on angiogenesis. siRNA knockdown of Nrf2 and glutathione inhibition abolished the stimulation effect of AITC on cell migration and DNA damage. The biological activity of a novel AITC-conjugated silicon quantum dots (AITC-SiQDs) has been investigated for the first time. AITC-SiQDs showed similar anti-cancer properties to AITC at high doses while avoiding the low doses stimulation effect. In addition, AITC-SiQDs showed a lower and long-lasting activation of Nrf2 translocation into nucleus which correlated with their levels of cellular uptake, as detected by the intrinsic fluorescence of SiQDs. ROS production could be one of the mechanisms behind the anti-cancer effect of AITC-SiQDs. These data provide novel insights into the biphasic effect of AITC and highlight the application of nanotechnology to optimize the therapeutic potential of dietary isothiocyanates in cancer treatment

    Global distribution and diversity of marine Verrucomicrobia

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 1499-1505, doi:10.1038/ismej.2012.3.Verrucomicrobia is a bacterial phylum that is commonly detected in soil but little is known about the distribution and diversity of this phylum in the marine environment. To address this, we analyzed the marine microbial community composition in 506 samples from the International Census of Marine Microbes as well as eleven coastal samples taken from the California Current. These samples from both the water column and sediments covered a wide range of environmental conditions. Verrucomicrobia were present in 98% of the analyzed samples and thus appeared nearly ubiquitous in the ocean. Based on the occurrence of amplified 16S rRNA sequences, Verrucomicrobia constituted on average 2% of the water column and 1.4% of the sediment bacterial communities. The diversity of Verrucomicrobia displayed a biogeography at multiple taxonomic levels and thus, specific lineages appeared to have clear habitat preference. We found that Subdivision 1 and 4 generally dominated marine bacterial communities, whereas Subdivision 2 was confined to low salinity waters. Within the subdivisions, Verrucomicrobia community composition were significantly different in the water column compared to sediment as well as within the water column along gradients of salinity, temperature, nitrate, depth, and overall water column depth. Although we still know little about the ecophysiology of Verrucomicrobia lineages, the ubiquity of this phylum suggests that it may be important for the biogeochemical cycle of carbon in the ocean.We would like to thank the UCI Undergraduate Research Opportunity Program (S.F.), the National Science Foundation (OCE-0928544 and OCE-1046297, A.C.M.) and the Alfred P. Sloan Foundation (S.H., D.M.W., M.S.) for supporting the work

    Molecular therapy for the treatment of hepatocellular carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Conventional cytotoxic chemotherapy has failed to show a substantial benefit for patients with HCC. Recently, a number of new drugs targeting molecular mechanisms involved in liver cell transformation have entered into clinical trials and led to encouraging results. In this review we summarise this data and point to a number of new compounds, which are currently being tested and can potentially broaden our therapeutic arsenal even further

    The influence of cultivation methods on Shewanella oneidensis physiology and proteome expression

    Get PDF
    High-throughput analyses that are central to microbial systems biology and ecophysiology research benefit from highly homogeneous and physiologically well-defined cell cultures. While attention has focused on the technical variation associated with high-throughput technologies, biological variation introduced as a function of cell cultivation methods has been largely overlooked. This study evaluated the impact of cultivation methods, controlled batch or continuous culture in bioreactors versus shake flasks, on the reproducibility of global proteome measurements in Shewanellaoneidensis MR-1. Variability in dissolved oxygen concentration and consumption rate, metabolite profiles, and proteome was greater in shake flask than controlled batch or chemostat cultures. Proteins indicative of suboxic and anaerobic growth (e.g., fumarate reductase and decaheme c-type cytochromes) were more abundant in cells from shake flasks compared to bioreactor cultures, a finding consistent with data demonstrating that “aerobic” flask cultures were O2 deficient due to poor mass transfer kinetics. The work described herein establishes the necessity of controlled cultivation for ensuring highly reproducible and homogenous microbial cultures. By decreasing cell to cell variability, higher quality samples will allow for the interpretive accuracy necessary for drawing conclusions relevant to microbial systems biology research
    corecore