10,298 research outputs found

    Perturbative evolution of the static configurations, quasinormal modes and quasi normal ringing in the Apostolatos - Thorne cylindrical shell model

    Get PDF
    We study the perturbative evolution of the static configurations, quasinormal modes and quasi normal ringing in the Apostolatos - Thorne cylindrical shell model. We consider first an expansion in harmonic modes and show that it provides a complete solution for the characteristic value problem for the finite perturbations of a static configuration. As a consequence of this completeness we obtain a proof of the stability of static solutions under this type of perturbations. The explicit expression for the mode expansion are then used to obtain numerical values for some of the quasi normal mode complex frequencies. Some examples involving the numerical evaluation of the integral mode expansions are described and analyzed, and the quasi normal ringing displayed by the solutions is found to be in agreement with quasi normal modes found previously. Going back to the full relativistic equations of motion we find their general linear form by expanding to first order about a static solution. We then show that the resulting set of coupled ordinary and partial differential equations for the dynamical variables of the system can be used to set an initial plus boundary values problem, and prove that there is an associated positive definite constant of the motion that puts absolute bounds on the dynamic variables of the system, establishing the stability of the motion of the shell under arbitrary, finite perturbations. We also show that the problem can be solved numerically, and provide some explicit examples that display the complete agreement between the purely numerical evolution and that obtained using the mode expansion, in particular regarding the quasi normal ringing that results in the evolution of the system. We also discuss the relation of the present work to some recent results on the same model that have appeared in the literature.Comment: 27 pages, 7 figure

    Subtleties in the beta function calculation of N=1 supersymmetric gauge theories

    Full text link
    We investigate some peculiarities in the calculation of the two-loop beta-function of N=1N=1 supersymmetric models which are intimately related to the so-called "Anomaly Puzzle". There is an apparent paradox when the computation is performed in the framework of the covariant derivative background field method. In this formalism, it is obtained a finite two-loop effective action, although a non-null coefficient for the beta-function is achieved by means of the renormalized two-point function in the background field. We show that if the standard background field method is used, this two-point function has a divergent part which allows for the calculation of the beta-function via the renormalization constants, as usual. Therefore, we conjecture that this paradox has its origin in the covariant supergraph formalism itself, possibly being an artifact of the rescaling anomaly.Comment: Few misprintings corrected and comments added. To meet the version to be published at European Physical Journal

    On the recovery of ISW fluctuations using large-scale structure tracers and CMB temperature and polarization anisotropies

    Get PDF
    In this work we present a method to extract the signal induced by the integrated Sachs-Wolfe (ISW) effect in the cosmic microwave background (CMB). It makes use of the Linear Covariance-Based filter introduced by Barreiro et al., and combines CMB data with any number of large-scale structure (LSS) surveys and lensing information. It also exploits CMB polarization to reduce cosmic variance. The performance of the method has been thoroughly tested with simulations taking into account the impact of non-ideal conditions such as incomplete sky coverage or the presence of noise. In particular, three galaxy surveys are simulated, whose redshift distributions peak at low (z≃0.3z \simeq 0.3), intermediate (z≃0.6z \simeq 0.6) and high redshift (z≃0.9z \simeq 0.9). The contribution of each of the considered data sets as well as the effect of a mask and noise in the reconstructed ISW map is studied in detail. When combining all the considered data sets (CMB temperature and polarization, the three galaxy surveys and the lensing map), the proposed filter successfully reconstructs a map of the weak ISW signal, finding a perfect correlation with the input signal for the ideal case and around 80 per cent, on average, in the presence of noise and incomplete sky coverage. We find that including CMB polarization improves the correlation between input and reconstruction although only at a small level. Nonetheless, given the weakness of the ISW signal, even modest improvements can be of importance. In particular, in realistic situations, in which less information is available from the LSS tracers, the effect of including polarisation is larger. For instance, for the case in which the ISW signal is recovered from CMB plus only one survey, and taking into account the presence of noise and incomplete sky coverage, the improvement in the correlation coefficient can be as large as 10 per cent.Comment: 17 pages, 15 figures, accepted for publication in MNRA

    On the void explanation of the Cold Spot

    Get PDF
    The integrated Sachs-Wolfe (ISW) contribution induced on the cosmic microwave background by the presence of a supervoid as the one detected by Szapudi et al. (2015) is reviewed in this letter in order to check whether it could explain the Cold Spot (CS) anomaly. Two different models, previously used for the same purpose, are considered to describe the matter density profile of the void: a top hat function and a compensated profile produced by a Gaussian potential. The analysis shows that, even enabling ellipticity changes or different values for the dark-energy equation of state parameter ω\omega, the ISW contribution due to the presence of the void does not reproduce the properties of the CS. Finally, the probability of alignment between the void and the CS is also questioned as an argument in favor of a physical connection between these two phenomena

    Decoherence induced by a chaotic environment: A quantum walker with a complex coin

    Full text link
    We study the differences between the process of decoherence induced by chaotic and regular environments. For this we analyze a family of simple models wich contain both regular and chaotic environments. In all cases the system of interest is a "quantum walker", i.e. a quantum particle that can move on a lattice with a finite number of sites. The walker interacts with an environment wich has a D dimensional Hilbert space. The results we obtain suggest that regular and chaotic environments are not distinguishable from each other in a (short) timescale t*, wich scales with the dimensionality of the environment as t*~log(D). Howeber, chaotic environments continue to be effective over exponentially longer timescales while regular environments tend to reach saturation much sooner. We present both numerical and analytical results supporting this conclusion. The family of chaotic evolutions we consider includes the so-called quantum multi-baker-map as a particular case.Comment: 7 pages, 8 figure

    Integrated Sachs-Wolfe map recovery from NVSS and WMAP 7yr data

    Get PDF
    We present a map of the Cosmic Microwave Background (CMB) anisotropies induced by the late Integrated Sachs Wolfe effect. The map is constructed by combining the information of the WMAP 7-yr CMB data and the NRAO VLA Sky Survey (NVSS) through a linear filter. This combination improves the quality of the map that would be obtained using information only from the Large Scale Structure data. In order to apply the filter, a given cosmological model needs to be assumed. In particular, we consider the standard LCDM model. As a test of consistency, we show that the reconstructed map is in agreemet with the assumed model, which is also favoured against a scenario where no correlation between the CMB and NVSS catalogue is considered.Comment: 6 pages, 4 figures. Minor revision, accepted for publication in MNRA
    • …
    corecore