We study the perturbative evolution of the static configurations, quasinormal
modes and quasi normal ringing in the Apostolatos - Thorne cylindrical shell
model. We consider first an expansion in harmonic modes and show that it
provides a complete solution for the characteristic value problem for the
finite perturbations of a static configuration. As a consequence of this
completeness we obtain a proof of the stability of static solutions under this
type of perturbations. The explicit expression for the mode expansion are then
used to obtain numerical values for some of the quasi normal mode complex
frequencies. Some examples involving the numerical evaluation of the integral
mode expansions are described and analyzed, and the quasi normal ringing
displayed by the solutions is found to be in agreement with quasi normal modes
found previously. Going back to the full relativistic equations of motion we
find their general linear form by expanding to first order about a static
solution. We then show that the resulting set of coupled ordinary and partial
differential equations for the dynamical variables of the system can be used to
set an initial plus boundary values problem, and prove that there is an
associated positive definite constant of the motion that puts absolute bounds
on the dynamic variables of the system, establishing the stability of the
motion of the shell under arbitrary, finite perturbations. We also show that
the problem can be solved numerically, and provide some explicit examples that
display the complete agreement between the purely numerical evolution and that
obtained using the mode expansion, in particular regarding the quasi normal
ringing that results in the evolution of the system. We also discuss the
relation of the present work to some recent results on the same model that have
appeared in the literature.Comment: 27 pages, 7 figure