364 research outputs found

    Elucidation of the Complete \u3ci\u3eAzorhizobium\u3c/i\u3e Nicotinate Catabolism Pathway

    Get PDF
    A complete pathway for Azorhizobium caulinodans nicotinate catabolism has been determined from mutant phenotype analyses, isolation of metabolic intermediates, and structural studies. Nicotinate serves as a respiratory electron donor to O2 via a membrane-bound hydroxylase and a specific c-type cytochrome oxidase. The resulting oxidized product, 6-hydroxynicotinate, is next reduced to 1,4,5,6-tetrahydro-6-oxonicotinate. Hydrolytic ring breakage follows, with release of pyridine N as ammonium. Decarboxylation then releases the nicotinate C-7 carboxyl group as CO2, and the remaining C skeleton is then oxidized to yield glutarate. Transthioesterification with succinyl coenzyme A (succinyl-CoA) yields glutaryl-CoA, which is then oxidatively decarboxylated to yield crotonyl-CoA. As with general acyl β oxidation, L-β-hydroxybutyryl-CoA, acetoacetyl-CoA, and finally two molecules of acetyl-CoA are produced. In sum, nicotinate is catabolized to yield two CO2 molecules, two acetyl-CoA molecules, and ammonium. Nicotinate catabolism stimulates Azorhizobium N2 fixation rates in culture. Nicotinate catabolism mutants still able to liberate pyridine N as ammonium retain this capability, whereas mutants so blocked do not. From, mutant analyses and additional physiological tests, N2 fixation stimulation is indirect. In N-limited culture, nicotinate catabolism augments anabolic N pools and, as a consequence, yields N2-fixing cells with higher dinitrogenase content

    Random walks on the Apollonian network with a single trap

    Full text link
    Explicit determination of the mean first-passage time (MFPT) for trapping problem on complex media is a theoretical challenge. In this paper, we study random walks on the Apollonian network with a trap fixed at a given hub node (i.e. node with the highest degree), which are simultaneously scale-free and small-world. We obtain the precise analytic expression for the MFPT that is confirmed by direct numerical calculations. In the large system size limit, the MFPT approximately grows as a power-law function of the number of nodes, with the exponent much less than 1, which is significantly different from the scaling for some regular networks or fractals, such as regular lattices, Sierpinski fractals, T-graph, and complete graphs. The Apollonian network is the most efficient configuration for transport by diffusion among all previously studied structure.Comment: Definitive version accepted for publication in EPL (Europhysics Letters

    Extending reference assembly models

    Get PDF
    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools and updated data reporting formats are also required

    <i>Schizosaccharomyces pombe</i> Pol II transcription elongation factor ELL functions as part of a rudimentary super elongation complex

    Get PDF
    ELL family transcription factors activate the overall rate of RNA polymerase II (Pol II) transcription elongation by binding directly to Pol II and suppressing its tendency to pause. In metazoa, ELL regulates Pol II transcription elongation as part of a large multisubunit complex referred to as the Super Elongation Complex (SEC), which includes P-TEFb and EAF, AF9 or ENL, and an AFF family protein. Although orthologs of ELL and EAF have been identified in lower eukaryotes including Schizosaccharomyces pombe, it has been unclear whether SEClike complexes function in lower eukaryotes. In this report, we describe isolation from S. pombe of an ELL-containing complex with features of a rudimentary SEC. This complex includes S. pombe Ell1, Eaf1, and a previously uncharacterized protein we designate Ell1 binding protein 1 (Ebp1), which is distantly related to metazoan AFF family members. Like the metazoan SEC, this S. pombe ELL complex appears to function broadly in Pol II transcription. Interestingly, it appears to have a particularly important role in regulating genes involved in cell separation

    Cooperation, Norms, and Revolutions: A Unified Game-Theoretical Approach

    Get PDF
    Cooperation is of utmost importance to society as a whole, but is often challenged by individual self-interests. While game theory has studied this problem extensively, there is little work on interactions within and across groups with different preferences or beliefs. Yet, people from different social or cultural backgrounds often meet and interact. This can yield conflict, since behavior that is considered cooperative by one population might be perceived as non-cooperative from the viewpoint of another. To understand the dynamics and outcome of the competitive interactions within and between groups, we study game-dynamical replicator equations for multiple populations with incompatible interests and different power (be this due to different population sizes, material resources, social capital, or other factors). These equations allow us to address various important questions: For example, can cooperation in the prisoner's dilemma be promoted, when two interacting groups have different preferences? Under what conditions can costly punishment, or other mechanisms, foster the evolution of norms? When does cooperation fail, leading to antagonistic behavior, conflict, or even revolutions? And what incentives are needed to reach peaceful agreements between groups with conflicting interests? Our detailed quantitative analysis reveals a large variety of interesting results, which are relevant for society, law and economics, and have implications for the evolution of language and culture as well

    Thioflavine-T and Congo Red reveal the polymorphism of insulin amyloid fibrils when probed by polarization-resolved fluorescence microscopy.

    No full text
    International audienceAmyloid fibrils are protein misfolding structures that involve a β-sheet structure and are associated with the pathologies of various neurodegenerative diseases. Here we show that Thioflavine-T and Congo Red, two major dyes used to image fibrils by fluorescence assays, can provide deep structural information when probed by means of polarization-resolved fluorescence microscopy. Unlike fluorescence anisotropy or fluorescence detected linear dichroism imaging, this technique allows to retrieve simultaneously both mean orientation and orientation dispersion of the dye, used here as a reporter of the fibril structure. We have observed that insulin amyloid fibrils exhibit a homogeneous behavior over the fibrils' length, confirming their structural uniformity. In addition, these results reveal the existence of various structures among the observed fibrils' population, in spite of a similar aspect when imaged with conventional fluorescence microscopy. This optical nondestructive technique opens perspectives for in vivo structural analyses or high throughput screening

    Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity leads to an increase in inflammation and insulin resistance. This study determined antioxidant activity of flaxseed and its role in inflammation and insulin resistance in obese glucose intolerant people.</p> <p>Methods</p> <p>Using a randomized crossover design, nine obese glucose intolerant people consumed 40 g ground flaxseed or 40 g wheat bran daily for 12 weeks with a 4-week washout period. Plasma inflammation biomarkers (CRP, TNF-α, and IL-6), glucose, insulin, and thiobaribituric acid reactive substance (TBARS) were measured before and after of each supplementation.</p> <p>Results</p> <p>Flaxseed supplementation decreased TBARS (p = 0.0215) and HOMA-IR (p = 0.0382). Flaxseed or wheat bran supplementation did not change plasma inflammatory biomarkers. A positive relationship was found between TBARS and HOMA-IR (r = 0.62, p = 0.0003).</p> <p>Conclusions</p> <p>The results of the study weakly support that decreased insulin resistance might have been secondary to antioxidant activity of flaxseed. However, the mechanism(s) of decreased insulin resistance by flaxseed should be further determined using flaxseed lignan.</p
    • …
    corecore