601 research outputs found
Frontal fibrosing alopecia in men: an association with leave-on facial cosmetics and sunscreens
SCOPUS: le.jinfo:eu-repo/semantics/publishe
Experimental observation of high field diamagnetic fluctuations in Niobium
We have performed a magnetic study of a bulk metallic sample of Nb with
critical temperature K. Magnetization versus temperature (M {\it
vs} T) data obtained for fixed magnetic fields above 1 kOe show a
superconducting transition which becomes broader as the field is increased. The
data are interpreted in terms of the diamagnetic lowest Landau level (LLL)
fluctuation theory. The scaling analysis gives values of the superconducting
transition temperature consistent with % . We search for
universal 3D LLL behavior by comparing scaling results for Nb and YBaCuO, but
obtain no evidence for universality.Comment: 5 pages, 6 figures, Accepted for publication in Phys.Rev.
Fluctuation Study of the Specific Heat of MgB2
The specific heat of polycrystalline MgB has been measured with
high resolution ac calorimetry from 5 to 45 K at constant magnetic fields. The
excess specific heat above T is discussed in terms of Gaussian
fluctuations and suggests that MgB is a bulk superconductor with
Ginzburg-Landau coherence length \AA . The transition-width
broadening in field is treated in terms of lowest-Landau-level (LLL)
fluctuations. That analysis requires that \AA . The underestimate
of the coherence length in field, along with deviations from 3D LLL
predictions, suggest that there is an influence from the anisotropy of B
between the c-axis and the a-b plane.Comment: Phys. Rev. B 66, 134515 (2002
Scaling in high-temperature superconductors
A Hartree approximation is used to study the interplay of two kinds of
scaling which arise in high-temperature superconductors, namely critical-point
scaling and that due to the confinement of electron pairs to their lowest
Landau level in the presence of an applied magnetic field. In the neighbourhood
of the zero-field critical point, thermodynamic functions scale with the
scaling variable , which differs from the variable
suggested by the gaussian approximation.
Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding
the upper critical field line but not in the vicinity of the zero-field
transition. For YBaCuO in particular, a field of at least 10 T is needed to
observe LLL scaling. These results are consistent with a range of recent
experimental measurements of the magnetization, transport properties and,
especially, the specific heat of high- materials.Comment: 22 pages + 1 figure appended as postscript fil
Flux Lattice Melting and Lowest Landau Level Fluctuations
We discuss the influence of lowest Landau level (LLL) fluctuations near
H_{c2}(T) on flux lattice melting in YBaCuO (YBCO). We
show that the specific heat step of the flux lattice melting transition in YBCO
single crystals can be attributed largely to the degrees of freedom associated
with LLL fluctuations. These degrees of freedom have already been shown to
account for most of the latent heat. We also show that these results are a
consequence of the correspondence between flux lattice melting and the onset of
LLL fluctuations.Comment: 4 pages, 2 embedded figure
Numerical studies of the phase diagram of layered type II superconductors in a magnetic field
We report on simulations of layered superconductors using the
Lawrence-Doniach model in the framework of the lowest Landau level
approximation. We find a first order phase transition with a dependence
which agrees very well with the experimental ``melting'' line in YBaCuO. The
transition is not associated with vortex lattice melting, but separates two
vortex liquid states characterised by different degrees of short-range
crystalline order and different length scales of correlations between vortices
in different layers. The transition line ends at a critical end-point at low
fields. We find the magnetization discontinuity and the location of the lower
critical magnetic field to be in good agreement with experiments in YBaCuO.
Length scales of order parameter correlations parallel and perpendicular to the
magnetic field increase exponentially as 1/T at low temperatures. The dominant
relaxation time scales grow roughly exponentially with these correlation
lengths. We find that the first order phase transition persists in the presence
of weak random point disorder but can be suppressed entirely by strong
disorder. No vortex glass or Bragg glass state is found in the presence of
disorder. The consistency of our numerical results with various experimental
features in YBaCuO, including the dependence on anisotropy, and the temperature
dependence of the structure factor at the Bragg peaks in neutron scattering
experiments is demonstrated.Comment: 25 pages (revtex), 19 figures included, submitted to PR
Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.
Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10Â mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20Â mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection
Forefoot pathology in rheumatoid arthritis identified with ultrasound may not localise to areas of highest pressure: cohort observations at baseline and twelve months
BackgroundPlantar pressures are commonly used as clinical measures, especially to determine optimum foot orthotic design. In rheumatoid arthritis (RA) high plantar foot pressures have been linked to metatarsophalangeal (MTP) joint radiological erosion scores. However, the sensitivity of foot pressure measurement to soft tissue pathology within the foot is unknown. The aim of this study was to observe plantar foot pressures and forefoot soft tissue pathology in patients who have RA.Methods A total of 114 patients with established RA (1987 ACR criteria) and 50 healthy volunteers were assessed at baseline. All RA participants returned for reassessment at twelve months. Interface foot-shoe plantar pressures were recorded using an F-Scan® system. The presence of forefoot soft tissue pathology was assessed using a DIASUS musculoskeletal ultrasound (US) system. Chi-square analyses and independent t-tests were used to determine statistical differences between baseline and twelve months. Pearson’s correlation coefficient was used to determine interrelationships between soft tissue pathology and foot pressures.ResultsAt baseline, RA patients had a significantly higher peak foot pressures compared to healthy participants and peak pressures were located in the medial aspect of the forefoot in both groups. In contrast, RA participants had US detectable soft tissue pathology in the lateral aspect of the forefoot. Analysis of person specific data suggests that there are considerable variations over time with more than half the RA cohort having unstable presence of US detectable forefoot soft tissue pathology. Findings also indicated that, over time, changes in US detectable soft tissue pathology are out of phase with changes in foot-shoe interface pressures both temporally and spatially.Conclusions We found that US detectable forefoot soft tissue pathology may be unrelated to peak forefoot pressures and suggest that patients with RA may biomechanically adapt to soft tissue forefoot pathology. In addition, we have observed that, in patients with RA, interface foot-shoe pressures and the presence of US detectable forefoot pathology may vary substantially over time. This has implications for clinical strategies that aim to offload peak plantar pressures
Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields
The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution
- …