14,705 research outputs found
Time-resolved photometry of the young dipper RX~J1604.3-2130A:Unveiling the structure and mass transport through the innermost disk
Context. RX J1604.3-2130A is a young, dipper-type, variable star in the Upper Scorpius association, suspected to have an inclined inner disk, with respect to its face-on outer disk. Aims. We aim to study the eclipses to constrain the inner disk properties. Methods. We used time-resolved photometry from the Rapid Eye Mount telescope and Kepler 2 data to study the multi-wavelength variability, and archival optical and infrared data to track accretion, rotation, and changes in disk structure. Results. The observations reveal details of the structure and matter transport through the inner disk. The eclipses show 5 d quasi-periodicity, with the phase drifting in time and some periods showing increased/decreased eclipse depth and frequency. Dips are consistent with extinction by slightly processed dust grains in an inclined, irregularly-shaped inner disk locked to the star through two relatively stable accretion structures. The grains are located near the dust sublimation radius (similar to 0.06 au) at the corotation radius, and can explain the shadows observed in the outer disk. The total mass (gas and dust) required to produce the eclipses and shadows is a few % of a Ceres mass. Such an amount of mass is accreted/replenished by accretion in days to weeks, which explains the variability from period to period. Spitzer and WISE infrared variability reveal variations in the dust content in the innermost disk on a timescale of a few years, which is consistent with small imbalances (compared to the stellar accretion rate) in the matter transport from the outer to the inner disk. A decrease in the accretion rate is observed at the times of less eclipsing variability and low mid-IR fluxes, confirming this picture. The v sin i = 16 km s(-1) confirms that the star cannot be aligned with the outer disk, but is likely close to equator-on and to be aligned with the inner disk. This anomalous orientation is a challenge for standard theories of protoplanetary disk formation.Science & Technology Facilities Council (STFC): ST/S000399/1.
ESO fellowship.
European Union (EU): 823 823.
German Research Foundation (DFG): FOR 2634/1 TE 1024/1-1.
French National Research Agency (ANR): ANR-16-CE31-0013.
Alexander von Humboldt Foundation.
European Research Council (ERC): 678 194.
European Research Council (ERC): 742 095.
National Aeronautics & Space Administration (NASA).
National Science Foundation (NSF).
National Aeronautics & Space Administration (NASA): NNG05GF22G.
National Science Foundation (NSF): AST-0909182, AST-1 313 422
Gate-tunable band structure of the LaAlO-SrTiO interface
The 2-dimensional electron system at the interface between LaAlO and
SrTiO has several unique properties that can be tuned by an externally
applied gate voltage. In this work, we show that this gate-tunability extends
to the effective band structure of the system. We combine a magnetotransport
study on top-gated Hall bars with self-consistent Schr\"odinger-Poisson
calculations and observe a Lifshitz transition at a density of
cm. Above the transition, the carrier density of one
of the conducting bands decreases with increasing gate voltage. This surprising
decrease is accurately reproduced in the calculations if electronic
correlations are included. These results provide a clear, intuitive picture of
the physics governing the electronic structure at complex oxide interfaces.Comment: 14 pages, 4 figure
Quantum models related to fouled Hamiltonians of the harmonic oscillator
We study a pair of canonoid (fouled) Hamiltonians of the harmonic oscillator
which provide, at the classical level, the same equation of motion as the
conventional Hamiltonian. These Hamiltonians, say and , result
to be explicitly time-dependent and can be expressed as a formal rotation of
two cubic polynomial functions, and , of the canonical variables
(q,p).
We investigate the role of these fouled Hamiltonians at the quantum level.
Adopting a canonical quantization procedure, we construct some quantum models
and analyze the related eigenvalue equations. One of these models is described
by a Hamiltonian admitting infinite self-adjoint extensions, each of them has a
discrete spectrum on the real line. A self-adjoint extension is fixed by
choosing the spectral parameter of the associated eigenvalue
equation equal to zero. The spectral problem is discussed in the context of
three different representations. For , the eigenvalue equation is
exactly solved in all these representations, in which square-integrable
solutions are explicity found. A set of constants of motion corresponding to
these quantum models is also obtained. Furthermore, the algebraic structure
underlying the quantum models is explored. This turns out to be a nonlinear
(quadratic) algebra, which could be applied for the determination of
approximate solutions to the eigenvalue equations.Comment: 24 pages, no figures, accepted for publication on JM
Dynamic compartmentalization of bacteria: accurate division in E. coli
Positioning of the midcell division plane within the bacterium E. coli is
controlled by the min system of proteins: MinC, MinD and MinE. These proteins
coherently oscillate from end to end of the bacterium. We present a
reaction--diffusion model describing the diffusion of min proteins along the
bacterium and their transfer between the cytoplasmic membrane and cytoplasm.
Our model spontaneously generates protein oscillations in good agreement with
experiments. We explore the oscillation stability, frequency and wavelength as
a function of protein concentration and bacterial length.Comment: 4 pages, 4 figures, Latex2e, Revtex
Intense field stabilization in circular polarization: 3D time-dependent dynamics
We investigate the stabilization of a hydrogen atom in circularly polarized
laser fields. We use a time-dependent, fully three dimensional approach to
study the quantum dynamics of the hydrogen atom subject to high intensity,
short wavelength laser pulses. We find enhanced survival probability as the
field is increased under fixed envelope conditions. We also confirm wavepacket
dynamics seen in prior time-dependent computations restricted to two
dimensions.Comment: 4 pages, 3 figures, submitte
Assessment of left ventricular ejection fraction in patients eligible for ICD therapy: Discrepancy between cardiac magnetic resonance imaging and 2D echocardiography
OBJECTIVE: Implantable cardioverter defibrillators (ICD) and cardiac resynchronisation therapy (CRT) have substantially improved the survival of patients with cardiomyopathy. Eligibility for this therapy requires a left ventricular ejection fraction (LVEF) <35 %. This is largely based on studies using echocardiography. Cardiac magnetic resonance imaging (CMR) is increasingly utilised for LVEF assessment, but several studies have shown differences between LVEF assessed by CMR and echocardiography. The present study compared LVEF assessment by CMR and echocardiography in a heart failure population and evaluated effects on eligibility for device therapy. METHODS: 152 patients (106 male, mean age 65.5 ± 9.9 years) referred for device therapy were included. During evaluation of eligibility they underwent both CMR and echocardiographic LVEF assessment. CMR volumes were computed from a stack of short-axis images. Echocardiographic volumes were computed using Simpson’s biplane method. RESULTS: The study population demonstrated an underestimation of end-diastolic volume (EDV) and end-systolic volume (ESV) by echocardiography of 71 ± 53 ml (mean ± SD) and 70 ± 49 ml, respectively. This resulted in an overestimation of LVEF of 6.6 ± 8.3 % by echocardiography compared with CMR (echocardiographic LVEF 31.5 ± 8.7 % and CMR LVEF 24.9 ± 9.6 %). 28 % of patients had opposing outcomes of eligibility for cardiac device therapy depending on the imaging modality used. CONCLUSION: We found EDV and ESV to be underestimated by echocardiography, and LVEF assessed by CMR to be significantly smaller than by echocardiography. Applying an LVEF cut-off value of 35 %, CMR would significantly increase the number of patients eligible for device implantation. Therefore, LVEF cut-off values might need reassessment when using CMR
G2 Hitchin functionals at one loop
We consider the quantization of the effective target space description of
topological M-theory in terms of the Hitchin functional whose critical points
describe seven-manifolds with G2 structure. The one-loop partition function for
this theory is calculated and an extended version of it, that is related to
generalized G2 geometry, is compared with the topological G2 string. We relate
the reduction of the effective action for the extended G2 theory to the Hitchin
functional description of the topological string in six dimensions. The
dependence of the partition functions on the choice of background G2 metric is
also determined.Comment: 58 pages, LaTeX; v2: Acknowledgments adde
Bone defect development in experimental canine peri-implantitis models: a systematic review
PURPOSE
To provide a systematic overview of preclinical research regarding bone defect formation around different implant surfaces after ligature-induced peri-implantitis models in dogs. Two focused questions were formulated: 'How much bone loss can be expected after a certain time of ligature induced peri-implantitis?' and 'Do different implant types, dog breeds and study protocols differ in their extent of bone loss?'
MATERIALS AND METHODS
A systematic literature search was conducted on four databases (MEDLINE, Web of Science, EMBASE and Scopus). Observations, which consisted of bone defects measured directly after ligature removal in canine models, were included and analysed. Two approaches were used to analyse the relatively heterogeneous studies that fulfilled the inclusion criteria. First, separate simple linear regressions were calculated for each study and implant surface, for which observations were available across multiple time points. Second, a linear mixed model was specified for the observations at 12 weeks after ligature initiation, and assessing the potential influencing factors on defect depth was explored using lasso regularisation.
RESULTS
Thirty-six studies with a total of 1082 implants were included after. Bone loss was determined at different time points, either with clinical measurements radiographically or histologically. Different implant groups [e.g. turned, sand-blasted-acid-etched (SLA), titanium-plasma-sprayed (TPS) and other rough surfaces] were assessed and described in the studies. A mean incremental defect depth increase of 0.08 mm (SD: -0.01-0.28 mm) per week was observed. After 12 weeks, the defect depths ranged between 0.7 and 5 mm. Based on the current data set, implant surface could not be statistically identified as an essential factor in defect depth after 12 weeks of ligature-induced peri-implantitis.
CONCLUSION
Expectable defect depth after a specific time of ligature-induced peri-implantitis can vary robustly. It is currently impossible to delineate apparent differences in bone loss around different implant surfaces
ArCo: the Italian Cultural Heritage Knowledge Graph
ArCo is the Italian Cultural Heritage knowledge graph, consisting of a
network of seven vocabularies and 169 million triples about 820 thousand
cultural entities. It is distributed jointly with a SPARQL endpoint, a software
for converting catalogue records to RDF, and a rich suite of documentation
material (testing, evaluation, how-to, examples, etc.). ArCo is based on the
official General Catalogue of the Italian Ministry of Cultural Heritage and
Activities (MiBAC) - and its associated encoding regulations - which collects
and validates the catalogue records of (ideally) all Italian Cultural Heritage
properties (excluding libraries and archives), contributed by CH administrators
from all over Italy. We present its structure, design methods and tools, its
growing community, and delineate its importance, quality, and impact
- …