96 research outputs found

    Quantum Nonlinear Switching Model

    Full text link
    We present a method, the dynamical cumulant expansion, that allows to calculate quantum corrections for time-dependent quantities of interacting spin systems or single spins with anisotropy. This method is applied to the quantum-spin model \hat{H} = -H_z(t)S_z + V(\bf{S}) with H_z(\pm\infty) = \pm\infty and \Psi (-\infty)=|-S> we study the quantity P(t)=(1-_t/S)/2. The case V(\bf{S})=-H_x S_x corresponds to the standard Landau-Zener-Stueckelberg model of tunneling at avoided-level crossing for N=2S independent particles mapped onto a single-spin-S problem, P(t) being the staying probability. Here the solution does not depend on S and follows, e.g., from the classical Landau-Lifshitz equation. A term -DS_z^2 accounts for particles' interaction and it makes the model nonlinear and essentially quantum mechanical. The 1/S corrections obtained with our method are in a good accord with a full quantum-mechanical solution if the classical motion is regular, as for D>0.Comment: 4 Phys. Rev. pages 2 Fig

    Measurement of Charged Pion Yields from Nuclei in (p,Pi+) Reactions Very Near Threshold

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    Ensemble-Empirical-Mode-Decomposition based micro-Doppler signal separation and classification

    Get PDF
    The target echo signals obtained by Synthetic Aperture Radar (SAR) and Ground Moving Target Indicator (GMTI platforms are mainly composed of two parts, the micro-Doppler signal and the target body part signal. The wheeled vehicle and the track vehicle are classified according to the different character of their micro-Doppler signal. In order to overcome the mode mixing problem in Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) is employed to decompose the original signal into a number of Intrinsic Mode Functions (IMF). The correlation analysis is then carried out to select IMFs which have a relatively high correlation with the micro-Doppler signal. Thereafter, four discriminative features are extracted and Support Vector Machine (SVM) classifier is applied for classification. The experimental results show that the features extracted after EEMD decomposition are effective, with up 90% success rate for classification using one feature. In addition, these four features are complementary in different target velocity and azimuth angles

    Modelling forage yield and water productivity of continuous crop sequences in the Argentinian Pampas

    Get PDF
    In recent years, the use of forage crop sequences (FCS) has been increased as a main component into the animal rations of the Argentinian pasture-based livestock systems. However, it is unclear how year-by-year rainfall variability and interactions with soil properties affect FCS dry matter (DM) yield in these environments. Biophysical crop models, such as Agricultural Production Systems Simulator (APSIM), are tools that enable the evaluation of crop yield variability across a wide of environments. The objective of this study was to evaluate the APSIM ability to predict forage DM yield and water productivity (WP) of multiple continuous FCS. Thirteen continuous FCS, including winter and summer crops, were simulated by APSIM during two/three growing seasons in five locations across the Argentinian Pampas. Our modelling approach was based on the simulation of multiple continuous FCS, in which crop DM yields depend on the performance of the previous crop in the same sequence and the final soil variables of the previous crop are the initial conditions for the next crop. Overall, APSIM was able to accurately simulate FCS DM yield (0.93 and 3.2 Mg ha−1 for concordance correlation coefficient [CCC] and root mean square error [RMSE] respectively). On the other hand, the model predictions were better for annual (CCC = 0.94; RMSE = 0.4 g m−2 mm−1) than for seasonal WP (CCC = 0.71; RMSE = 1.9 g m−2 mm−1), i.e. at the crop level. The model performance to predict WP was associated with better estimations of the soil water dynamics over the long-term, i.e. at the FCS level, rather than the short-term, i.e. at the crop level. The ability of APSIM to predict WP decreased as seasonal WP values increased, i.e. for low water inputs. For seasonal water inputs, <200 mm, the model tended to under-predict WP, which was directly associated with crop DM yield under-predictions for frequently harvested crops. Even though APSIM showed some weaknesses in predicting seasonal DM yield and WP, i.e. at the crop level, it appears as a potential tool for further research on complementary forage crops based on multiple continuous FCS in the Argentinian livestock systems
    • …
    corecore