128 research outputs found
Re-entrant Layer-by-Layer Etching of GaAs(001)
We report the first observation of re-entrant layer-by-layer etching based on
{\it in situ\/} reflection high-energy electron-diffraction measurements. With
AsBr used to etch GaAs(001), sustained specular-beam intensity oscillations
are seen at high substrate temperatures, a decaying intensity with no
oscillations at intermediate temperatures, but oscillations reappearing at
still lower temperatures. Simulations of an atomistic model for the etching
kinetics reproduce the temperature ranges of these three regimes and support an
interpretation of the origin of this phenomenon as the site-selectivity of the
etching process combined with activation barriers to interlayer adatom
migration.Comment: 11 pages, REVTeX 3.0. Physical Review Letters, in press
Kinetic Roughening in Growth Models with Diffusion in Higher Dimensions
We present results of numerical simulations of kinetic roughening for a
growth model with surface diffusion (the Wolf-Villain model) in 3+1 and
4+1~dimensions using lattices of a linear size up to in 3+1~D and
in 4+1~D. The effective exponents calculated both from the surface width and
from the height--height correlation function are much larger than those
expected based on results in lower dimensions, due to a growth instability
which leads to the evolution of large mounded structures on the surface. An
increase of the range for incorporation of a freshly deposited particle leads
to a decrease of the roughness but does not suppress the instability.Comment: 8 pages, LaTeX 2.09, IC-DDV-93-00
FIRE-PROTECTION WITH ALKALI-ACTIVATED CEMENT BINDER
Fire resistance of unprotected steel structures is very low and steel elements must be protected from fire. One possibility is to create a protective layer of a cement-based material. Most types of cement have a low resistance to high temperatures, reducing mechanical properties. In flammability tests, cement activated with alkaline compounds showed better properties compared to conventional types of cement. This paper represents the determination of the properties of two H-Cement mortars with experlite or fireclay sand. Experiments carried out in a small kiln simulating a 1D load showed differences between elements in terms of heat transfer to the tested elements. The calculation model created to predict the course of the experiments has been validated and the unknown properties of the material have been calculated based on the data collected. The samples were tested in a small fire furnace. Finally, the thermal conductivity pattern was determined depending on the temperature
Fast coarsening in unstable epitaxy with desorption
Homoepitaxial growth is unstable towards the formation of pyramidal mounds
when interlayer transport is reduced due to activation barriers to hopping at
step edges. Simulations of a lattice model and a continuum equation show that a
small amount of desorption dramatically speeds up the coarsening of the mound
array, leading to coarsening exponents between 1/3 and 1/2. The underlying
mechanism is the faster growth of larger mounds due to their lower evaporation
rate.Comment: 4 pages, 4 PostScript figure
Scaling of Heteroepitaxial Island Sizes
Monte Carlo simulations of an atomistic solid-on-solid model are used to
study the effect of lattice misfit on the distribution of two-dimensional
islands sizes as a function of coverage in the submonolayer
aggregation regime of epitaxial growth. Misfit promotes the detachment of atoms
from the perimeter of large pseudomorphic islands and thus favors their
dissolution into smaller islands that relieve strain more efficiently. The
number density of islands composed of atoms exhibits scaling in the form
\mbox{)} where is the average island size. Unlike the
case of homoepitaxy, a rate equation theory based on this observation leads to
qualitatively different behavior than observed in the simulations.Comment: 10 pages, LaTeX 2.09, IC-DDV-94-00
Competing mechanisms for step meandering in unstable growth
The meander instability of a vicinal surface growing under step flow
conditions is studied within a solid-on-solid model. In the absence of edge
diffusion the selected meander wavelength agrees quantitatively with the
continuum linear stability analysis of Bales and Zangwill [Phys. Rev. B {\bf
41}, 4400 (1990)]. In the presence of edge diffusion a local instability
mechanism related to kink rounding barriers dominates, and the meander
wavelength is set by one-dimensional nucleation. The long-time behavior of the
meander amplitude differs in the two cases, and disagrees with the predictions
of a nonlinear step evolution equation [O. Pierre-Louis et al., Phys. Rev.
Lett. {\bf 80}, 4221 (1998)]. The variation of the meander wavelength with the
deposition flux and with the activation barriers for step adatom detachment and
step crossing (the Ehrlich-Schwoebel barrier) is studied in detail. The
interpretation of recent experiments on surfaces vicinal to Cu(100) [T.
Maroutian et al., Phys. Rev. B {\bf 64}, 165401 (2001)] in the light of our
results yields an estimate for the kink barrier at the close packed steps.Comment: 8 pages, 7 .eps figures. Final version. Some errors in chapter V
correcte
Submonolayer Epitaxy Without A Critical Nucleus
The nucleation and growth of two--dimensional islands is studied with Monte
Carlo simulations of a pair--bond solid--on--solid model of epitaxial growth.
The conventional description of this problem in terms of a well--defined
critical island size fails because no islands are absolutely stable against
single atom detachment by thermal bond breaking. When two--bond scission is
negligible, we find that the ratio of the dimer dissociation rate to the rate
of adatom capture by dimers uniquely indexes both the island size distribution
scaling function and the dependence of the island density on the flux and the
substrate temperature. Effective pair-bond model parameters are found that
yield excellent quantitative agreement with scaling functions measured for
Fe/Fe(001).Comment: 8 pages, Postscript files (the paper and Figs. 1-3), uuencoded,
compressed and tarred. Surface Science Letters, in press
Unconventional MBE Strategies from Computer Simulations for Optimized Growth Conditions
We investigate the influence of step edge diffusion (SED) and desorption on
Molecular Beam Epitaxy (MBE) using kinetic Monte-Carlo simulations of the
solid-on-solid (SOS) model. Based on these investigations we propose two
strategies to optimize MBE growth. The strategies are applicable in different
growth regimes: During layer-by-layer growth one can exploit the presence of
desorption in order to achieve smooth surfaces. By additional short high flux
pulses of particles one can increase the growth rate and assist layer-by-layer
growth. If, however, mounds are formed (non-layer-by-layer growth) the SED can
be used to control size and shape of the three-dimensional structures. By
controlled reduction of the flux with time we achieve a fast coarsening
together with smooth step edges.Comment: 19 pages, 7 figures, submitted to Phys. Rev.
Analytical solution of generalized Burton--Cabrera--Frank equations for growth and post--growth equilibration on vicinal surfaces
We investigate growth on vicinal surfaces by molecular beam epitaxy making
use of a generalized Burton--Cabrera--Frank model. Our primary aim is to
propose and implement a novel analytical program based on a perturbative
solution of the non--linear equations describing the coupled adatom and dimer
kinetics. These equations are considered as originating from a fully
microscopic description that allows the step boundary conditions to be directly
formulated in terms of the sticking coefficients at each step. As an example,
we study the importance of diffusion barriers for adatoms hopping down
descending steps (Schwoebel effect) during growth and post-growth equilibration
of the surface.Comment: 16 pages, REVTeX 3.0, IC-DDV-94-00
Dynamic Scaling in a 2+1 Dimensional Limited Mobility Model of Epitaxial Growth
We study statistical scale invariance and dynamic scaling in a simple
solid-on-solid 2+1 - dimensional limited mobility discrete model of
nonequilibrium surface growth, which we believe should describe the low
temperature kinetic roughening properties of molecular beam epitaxy. The model
exhibits long-lived ``transient'' anomalous and multiaffine dynamic scaling
properties similar to that found in the corresponding 1+1 - dimensional
problem. Using large-scale simulations we obtain the relevant scaling
exponents, and compare with continuum theories.Comment: 5 pages, 4 ps figures included, RevTe
- …