2,610 research outputs found

    Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology

    Get PDF
    It is known that intake of dietary fatty acid (FA) is strongly correlated with prostate cancer progression but is highly dependent on the type of FAs. High levels of palmitic acid (PA) or arachidonic acid (AA) can stimulate the progression of cancer. In this study, a unique experimental set-up consisting of a Raman microscope, coupled with a commercial shear-flow microfluidic system is used to monitor fatty acid uptake by prostate cancer (PC-3) cells in real-time at the single cell level. Uptake of deuterated PA, deuterated AA, and the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) were monitored using this new system, while complementary flow cytometry experiments using Nile red staining, were also conducted for the validation of the cellular lipid uptake. Using this novel experimental system, we show that DHA and EPA have inhibitory effects on the uptake of PA and AA by PC-3 cells

    GUCY2C maintains intestinal LGR5+ stem cells by opposing ER stress

    Get PDF
    Long-lived multipotent stem cells (ISCs) at the base of intestinal crypts adjust their phenotypes to accommodate normal maintenance and post-injury regeneration of the epithelium. Their long life, lineage plasticity, and proliferative potential underlie the necessity for tight homeostatic regulation of the ISC compartment. In that context, the guanylate cyclase C (GUCY2C) receptor and its paracrine ligands regulate intestinal epithelial homeostasis, including proliferation, lineage commitment, and DNA damage repair. However, a role for this axis in maintaining ISCs remains unknown. Transgenic mice enabling analysis of ISCs (Lgr5-GFP) in the context of GUCY2C elimination (Gucy2c-/-) were combined with immunodetection techniques and pharmacological treatments to define the role of the GUCY2C signaling axis in supporting ISCs. ISCs were reduced in Gucy2c-/- mice, associated with loss of active Lgr5+ cells but a reciprocal increase in reserve Bmi1+ cells. GUCY2C was expressed in crypt base Lgr5+ cells in which it mediates canonical cyclic (c) GMPdependent signaling. Endoplasmic reticulum (ER) stress, typically absent from ISCs, was elevated throughout the crypt base in Gucy2c-/- mice. The chemical chaperone tauroursodeoxycholic acid resolved this ER stress and restored the balance of ISCs, an effect mimicked by the GUCY2C effector 8Br-cGMP. Reduced ISCs in Gucy2c-/-mice was associated with greater epithelial injury and impaired regeneration following sub-lethal doses of irradiation. These observations suggest that GUCY2C provides homeostatic signals that modulate ER stress and cell vulnerability as part of the machinery contributing to the integrity of ISCs. © Kraft et al

    Towards a method for rigorous development of generic requirements patterns

    No full text
    We present work in progress on a method for the engineering, validation and verification of generic requirements using domain engineering and formal methods. The need to develop a generic requirement set for subsequent system instantiation is complicated by the addition of the high levels of verification demanded by safety-critical domains such as avionics. Our chosen application domain is the failure detection and management function for engine control systems: here generic requirements drive a software product line of target systems. A pilot formal specification and design exercise is undertaken on a small (twosensor) system element. This exercise has a number of aims: to support the domain analysis, to gain a view of appropriate design abstractions, for a B novice to gain experience in the B method and tools, and to evaluate the usability and utility of that method.We also present a prototype method for the production and verification of a generic requirement set in our UML-based formal notation, UML-B, and tooling developed in support. The formal verification both of the structural generic requirement set, and of a particular application, is achieved via translation to the formal specification language, B, using our U2B and ProB tools

    Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    Get PDF
    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coef- ficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures

    Sperm morphology and the evolution of intracellular sperm-egg interactions

    Get PDF
    This is the final version of the article. Available from Wiley via the DOI in this record.Sperm morphology is incredibly diverse, even among closely related species, yet the coevolution between males and females of fertilization recognition systems is necessary for successful karyogamy (male and female pronuclear fusion). In most species, the entire sperm enters the egg during fertilization so sperm morphological diversity may impact the intracellular sperm–egg interactions necessary for karyogamy. We quantified morphological variation of sperm inside eggs prior to and following karyogamy in several species of Drosophila to understand whether evolution of sperm morphology could influence intracellular sperm–egg interactions (ISEIs). We measured seven parameters that describe ISEIs among species to determine whether these parameters varied both within a species across development and across species at the same developmental stage. We used heterospecific crosses to test the relative role of male origin, female origin, and interaction between the male and female in determining ISEIs. We found that sperm shape changed within a species as development proceeded and, at particular development stages, species varied in some ISEIs. Parental origin had an effect on some ISEIs, with a general trend for a stronger female effect. Overall, our findings identify conserved and variable ISEIs among species and demonstrate the potential to contribute understanding to gamete evolution and development.Leverhulme Trus

    Human GUCY2C-Targeted Chimeric Antigen Receptor (CAR)-Expressing T Cells Eliminate Colorectal Cancer Metastases.

    Get PDF
    One major hurdle to the success of adoptive T-cell therapy is the identification of antigens that permit effective targeting of tumors in the absence of toxicities to essential organs. Previous work has demonstrated that T cells engineered to express chimeric antigen receptors (CAR-T cells) targeting the murine homolog of the colorectal cancer antigen GUCY2C treat established colorectal cancer metastases, without toxicity to the normal GUCY2C-expressing intestinal epithelium, reflecting structural compartmentalization of endogenous GUCY2C to apical membranes comprising the intestinal lumen. Here, we examined the utility of a human-specific, GUCY2C-directed single-chain variable fragment as the basis for a CAR construct targeting human GUCY2C-expressing metastases. Human GUCY2C-targeted murine CAR-T cells promoted antigen-dependent T-cell activation quantified by activation marker upregulation, cytokine production, and killing of GUCY2C-expressing, but not GUCY2C-deficient, cancer cells in vitro. GUCY2C CAR-T cells provided long-term protection against lung metastases of murine colorectal cancer cells engineered to express human GUCY2C in a syngeneic mouse model. GUCY2C murine CAR-T cells recognized and killed human colorectal cancer cells endogenously expressing GUCY2C, providing durable survival in a human xenograft model in immunodeficient mice. Thus, we have identified a human GUCY2C-specific CAR-T cell therapy approach that may be developed for the treatment of GUCY2C-expressing metastatic colorectal cancer

    Obtaining forest foods from timber trees in Cameroon: How far do people walk to collect fruits and caterpillars?

    Get PDF
    Approximately 61% of timber species in the Congo Basin also bear locally used non-timber forest products. Amongst these are fruits of Baillonella toxisperma, and edible caterpillars on Entandrophragma cylindricum and Erythrophleum suaveolens. Participatory mapping combining GPS coordinates and interviews was carried out with collectors in villages adjacent to logging concessions in Cameroon in order to: locate the trees from which men and women obtained these foods; determine the distances travelled by men and women to collect these wild resources; and assess the potential impacts of logging activities on local people’s access to these food resource

    Asymptotic analysis for the generalized langevin equation

    Full text link
    Various qualitative properties of solutions to the generalized Langevin equation (GLE) in a periodic or a confining potential are studied in this paper. We consider a class of quasi-Markovian GLEs, similar to the model that was introduced in \cite{EPR99}. Geometric ergodicity, a homogenization theorem (invariance principle), short time asymptotics and the white noise limit are studied. Our proofs are based on a careful analysis of a hypoelliptic operator which is the generator of an auxiliary Markov process. Systematic use of the recently developed theory of hypocoercivity \cite{Vil04HPI} is made.Comment: 27 pages, no figures. Submitted to Nonlinearity

    Epidemiology of National Collegiate Athletic Association men's and women's swimming and diving injuries from 2009/2010 to 2013/2014

    Get PDF
    BACKGROUND: Recent injury data for collegiate-level swimming and diving are limited. This study describes the epidemiology of men's and women's swimming and diving injuries reported by the National Collegiate Athletic Association (NCAA) Injury Surveillance Program (ISP) during the 2009/2010 to 2013/2014 academic years. METHODS: Injuries and athlete-exposure (AE) data reported within 9 men's and 13 women's swimming and diving programmes were analysed. Injury rates, injury rate ratios (IRR), and injury proportions by body site, diagnosis and mechanism were reported with 95% CIs. RESULTS: The ISP captured 149 and 208 injuries for men's and women's swimming and diving, respectively, leading to injury rates of 1.54/1000 and 1.71/1000 AEs. Among females, divers had a higher injury rate (2.49/1000 AEs) than swimmers (1.63/1000 AEs; IRR=1.53; 95% CI 1.07 to 2.19). Injury rates for male divers (1.94/1000 AEs) and swimmers (1.48/1000 AEs) did not differ (IRR=1.33; 95% CI 0.85 to 2.31). Most injuries occurred to the shoulder, resulted in strains and were classified as overuse or non-contact. Female swimmers had a higher overuse injury rate (1.04/1000 AEs) than male swimmers (0.66/1000 AEs; IRR=1.58; 95% CI 1.14 to 2.19). Overuse injury rates for female divers (0.54/1000 AEs) and male divers (0.46/1000 AEs) did not differ (IRR=1.16; 95% CI 0.40 to 3.34). Injury rates in 2012/2013-2013/2014 were lower than those in 2009/2010-2011/2012 for women's swimming (IRR=0.70; 95% CI 0.52 to 0.95) and diving (IRR=0.56; 95% CI 0.30 to 1.08), respectively. No time trends existed for men's swimmers or divers. CONCLUSIONS: Shoulder, strain and overuse injuries were common in collegiate men's and women's swimming and diving. Female swimmers were more likely to suffer an overuse injury than male swimmers. In addition, divers may have higher injury rates than swimmers, although small reported numbers warrant additional research
    corecore