1,105 research outputs found

    Evaporation of ices near massive stars: models based on laboratory TPD data

    Get PDF
    Hot cores and their precursors contain an integrated record of the physics of the collapse process in the chemistry of the ices deposited during that collapse. In this paper, we present results from a new model of the chemistry near high mass stars in which the desorption of each species in the ice mixture is described as indicated by new experimental results obtained under conditions similar to those hot cores. Our models show that provided there is a monotonic increase in the temperature of the gas and dust surrounding the protostar, the changes in the chemical evolution of each species due to differential desorption are important. The species H2_2S, SO, SO2_2, OCS, H2_2CS, CS, NS, CH3_3OH, HCOOCH3_3, CH2_2CO, C2_2H5_5OH show a strong time dependence that may be a useful signature of time evolution in the warm-up phase as the star moves on to the Main Sequence. This preliminary study demonstrates the consequences of incorporating reliable TPD data into chemical models.Comment: 5 pages, accepted by MNRA

    Thermal Desorption of Water-Ice in the Interstellar Medium

    Get PDF
    Water (H2O) ice is an important solid constituent of many astrophysical environments. To comprehend the role of such ices in the chemistry and evolution of dense molecular clouds and comets, it is necessary to understand the freeze-out, potential surface reactivity, and desorption mechanisms of such molecular systems. Consequently, there is a real need from within the astronomical modelling community for accurate empirical molecular data pertaining to these processes. Here we give the first results of a laboratory programme to provide such data. Measurements of the thermal desorption of H2O ice, under interstellar conditions, are presented. For ice deposited under conditions that realistically mimic those in a dense molecular cloud, the thermal desorption of thin films (~50 molecular layers) is found to occur with zero order kinetics characterised by a surface binding energy, E_{des}, of 5773 +/- 60 K, and a pre-exponential factor, A, of 10^(30 +/- 2) molecules cm^-2 s^-1. These results imply that, in the dense interstellar medium, thermal desorption of H2O ice will occur at significantly higher temperatures than has previously been assumed.Comment: 9 pages, 4 figures, accepted for publication in MNRA

    Aggregation Behavior And Chromonic Liquid Crystal Properties Of An Anionic Monoazo Dye

    Get PDF
    X-ray scattering and various optical techniques are utilized to study the aggregation process and chromonic liquid crystal phase of the anionic monoazo dye Sunset Yellow FCF. The x-ray results demonstrate that aggregation involves pi-pi stacking of the molecules into columns, with the columns undergoing a phase transition to an orientationally ordered chromonic liquid crystal phase at high dye concentration. Optical absorption measurements on dilute solutions reveal that the aggregation takes place at all concentrations, with the average aggregation number increasing with concentration. A simple theory based on the law of mass action and an isodesmic aggregation process is in excellent agreement with the experimental data and yields a value for the bond energy between molecules in an aggregate. Measurements of the birefringence and order parameter are also performed as a function of temperature in the chromonic liquid crystal phase. The agreement between these results and a more complicated theory of aggregation is quite reasonable. Overall, these results both confirm that the aggregation process for some dyes is isodesmic and provide a second example of a well-characterized chromonic system

    Dielectric-barrier discharges in two-dimensional lattice potentials

    Full text link
    We use a pin-grid electrode to introduce a corrugated electrical potential into a planar dielectric-barrier discharge (DBD) system, so that the amplitude of the applied electric field has the profile of a two-dimensional square lattice. The lattice potential provides a template for the spatial distribution of plasma filaments in the system and has pronounced effects on the patterns that can form. The positions at which filaments become localized within the lattice unit cell vary with the width of the discharge gap. The patterns that appear when filaments either overfill or under-fill the lattice are reminiscent of those observed in other physical systems involving 2d lattices. We suggest that the connection between lattice-driven DBDs and other areas of physics may benefit from the further development of models that treat plasma filaments as interacting particles.Comment: 4 pages, 4 figure

    Effective index of refraction, optical rotation, and circular dichroism in isotropic chiral liquid crystals

    Get PDF
    This paper concerns optical properties of the isotropic phase above the isotropic-cholesteric transition and of the blue phase BP III. We introduce an effective index, which describes spatial dispersion effects such as optical rotation, circular dichroism, and the modification of the average index due to the fluctuations. We derive the wavelength dependance of these spatial dispersion effects quite generally without relying on an expansion in powers of the chirality and without assuming that the pitch of the cholesteric PP is much shorter than the wavelength of the light λ\lambda, an approximation which has been made in previous studies of this problem. The theoretical predictions are supported by comparing them with experimental spectra of the optical activity in the BP III phase.Comment: 15 pages and 7 figures. Submitted to PR

    Helix Inversion In The Chiral Nematic And Isotropic Phases Of A Liquid Crystal

    Get PDF
    Measurements of the chirality (2π/pitch) in the chiral nematic phase and of a structural constant proportional to the chirality in the isotropic liquid for a system in which a helix inversion line crosses the chiral nematic to isotropic phase transition line are reported. While the chirality shows a strong temperature dependence in the chiral nematic phase, it loses all temperature dependence in the isotropic phase. In addition, the chirality in the isotropic phase is proportional to the chirality in the chiral nematic phase at the phase transition, and may in fact be continuous across the transition. While molecular field and phenomenological theories can explain the strong temperature dependence in the chiral nematic phase, including the helix inversion, these theories predict a strong discontinuity in the chirality at the phase transition that is not supported by experiment. So while a theory that includes short range molecular correlations is called for to understand the behavior of the chirality across the phase transition, theoretical attempts to explain the chirality of a phase from a microscopic level must account for the strong role played by long range orientational order

    Chiral nematic liquid crystals in torus-shaped and cylindrical cavities

    Get PDF
    We present a Monte Carlo simulation study of chiral nematic liquid crystals confined in torus-shaped and cylindrical cavities. For an achiral nematic with planar degenerate anchoring confined to a toroidal or cylindrical cavity, the ground state is defect free, with an untwisted director field. As chirality is introduced, the ground state remains defect free but the director field becomes twisted within the cavity. For homeotropic anchoring, the ground state for an achiral nematic within a toroidal cavity consists of two disclination rings, one large and one small, that follow the major circumference of the torus. As chirality is introduced and increased, this ground state becomes unstable with respect to twisted configurations. The closed nature of the toroidal cavity requires that only a half integer number of twists can be formed and this leads to the ground state being either a single disclination line that encircles the torus twice or a pair of intertwined disclination rings forming stable, knotted defect structures

    Field-Dependent Tilt and Birefringence of Electroclinic Liquid Crystals: Theory and Experiment

    Get PDF
    An unresolved issue in the theory of liquid crystals is the molecular basis of the electroclinic effect in the smectic-A phase. Recent x-ray scattering experiments suggest that, in a class of siloxane-containing liquid crystals, an electric field changes a state of disordered molecular tilt in random directions into a state of ordered tilt in one direction. To investigate this issue, we measure the optical tilt and birefringence of these liquid crystals as functions of field and temperature, and we develop a theory for the distribution of molecular orientations under a field. Comparison of theory and experiment confirms that these materials have a disordered distribution of molecular tilt directions that is aligned by an electric field, giving a large electroclinic effect. It also shows that the net dipole moment of a correlated volume of molecules, a key parameter in the theory, scales as a power law near the smectic-A--smectic-C transition.Comment: 18 pages, including 9 postscript figures, uses REVTeX 3.0 and epsf.st

    Associations of cord leptin and cord insulin with adiposity and blood pressure in White British and Pakistani children aged 4/5 years.

    Get PDF
    Background: Cord leptin and cord insulin concentrations may be important biomarkers of child adiposity and cardiovascular health, especially in populations with an increased long-term risk of type 2 diabetes and cardiovascular diseases. We aimed to determine whether cord leptin and insulin are associated with adiposity and early cardiovascular health at age 4/5, and whether any associations differ between White British and Pakistani children. Methods: Using bi-ethnic cohort data from 6060 mother-offspring pairs (2717 (44.8%) White British, 3343 (55.2%) Pakistani), we examined associations of cord leptin and insulin with adiposity (BMI, skinfold thickness) and systolic and diastolic blood pressure at age 4/5. Results: Cord leptin and insulin were higher in Pakistani compared to White British children (7.4 ng/ml versus 6.7 ng/ml and 4.1 mU/L versus 3.63 mU/L , respectively). Associations with adiposity measurements were similar in both groups and close to the null value. For example, each 10 ng/ml higher cord leptin was associated with a difference in mean childhood BMI of 0.10 kg/m 2 (95% CI 0.01, 0.19) in White British, 0.01 kg/m 2 (95% CI -0.08, 0.10) in Pakistani and 0.04 kg/m 2 (95% CI -0.02, 0.11) in both groups combined.  Associations with systolic and diastolic blood pressure were also close to the null and consistent in both groups. Conclusions: We found no evidence that cord leptin or insulin were likely to be valuable biomarkers for predicting later adiposity and blood pressure in White British or Pakistani children. For now, other factors such as family history and social-economic status may be more useful markers of risk
    corecore