21,599 research outputs found

    A combined R-matrix eigenstate basis set and finite-differences propagation method for the time-dependent Schr\"{od}dinger equation: the one-electron case

    Get PDF
    In this work we present the theoretical framework for the solution of the time-dependent Schr\"{o}dinger equation (TDSE) of atomic and molecular systems under strong electromagnetic fields with the configuration space of the electron's coordinates separated over two regions, that is regions II and IIII. In region II the solution of the TDSE is obtained by an R-matrix basis set representation of the time-dependent wavefunction. In region IIII a grid representation of the wavefunction is considered and propagation in space and time is obtained through the finite-differences method. It appears this is the first time a combination of basis set and grid methods has been put forward for tackling multi-region time-dependent problems. In both regions, a high-order explicit scheme is employed for the time propagation. While, in a purely hydrogenic system no approximation is involved due to this separation, in multi-electron systems the validity and the usefulness of the present method relies on the basic assumption of R-matrix theory, namely that beyond a certain distance (encompassing region II) a single ejected electron is distinguishable from the other electrons of the multi-electron system and evolves there (region II) effectively as a one-electron system. The method is developed in detail for single active electron systems and applied to the exemplar case of the hydrogen atom in an intense laser field.Comment: 13 pages, 6 figures, submitte

    High Voltage CMOS Control Interface for Astronomy - Grade Charged Coupled Devices

    Full text link
    The Pan-STARRS telescope consists of an array of smaller mirrors viewed by a Gigapixel arrays of CCDs. These focal planes employ Orthogonal Transfer CCDs (OTCCDs) to allow on-chip image stabilization. Each OTCCD has advanced logic features that are controlled externally. A CMOS Interface Device for High Voltage has been developed to provide the appropiate voltage signal levels from a readout and control system designated STARGRASP. OTCCD chip output levels range from -3.3V to 16.7V, with two different output drive strenghts required depending on load capacitance (50pF and 1000pF), with 24mA of drive and a rise time on the order of 100ns. Additional testing ADC structures have been included in this chip to evaluate future functional additions for a next version of the chip.Comment: 13 pages, 17 gigure

    Comparison of numerical methods for the calculation of cold atom collisions

    Full text link
    Three different numerical techniques for solving a coupled channel Schroedinger equation are compared. This benchmark equation, which describes the collision between two ultracold atoms, consists of two channels, each containing the same diagonal Lennard-Jones potential, one of positive and the other of negative energy. The coupling potential is of an exponential form. The methods are i) a recently developed spectral type integral equation method based on Chebyshev expansions, ii) a finite element expansion, and iii) a combination of an improved Numerov finite difference method and a Gordon method. The computing time and the accuracy of the resulting phase shift is found to be comparable for methods i) and ii), achieving an accuracy of ten significant figures with a double precision calculation. Method iii) achieves seven significant figures. The scattering length and effective range are also obtained.Comment: 22 pages, 3 figures, submitted to J. Comput. Phys. documentstyle [thmsa,sw20aip]{article} in .te

    Electrical conductivity of chondritic meteorites

    Get PDF
    The electrical conductivity of samples of the Murchison and Allende carbonaceous chondrites is 4 to 6 orders of magnitude greater than rock forming minerals such as olivine for temperatures up to 700 C. The remarkably high electrical conductivity of these meteorites is attributed to carbon at the grain boundaries. Much of this carbon is produced by pyrolyzation of hydrocarbons at temperatures in excess of 150 C. As the temperature increases, light hydrocarbons are driven off and a carbon-rich residue or char migrates to the grain boundaries enhancing electrical conductivity. Assuming that carbon was present at the grain boundaries in the material which comprised the meteorite parent bodies, the electrical heating of such bodies was calculated as a function of body size and solar distance during a hypothetical T-Tauri phase of the sun. Input conductivity data for the meteorite parent body were the present carbonaceous chondrite values for temperatures up to 840 C and the electrical conductivity values for olivine above 840 C

    R-matrix Floquet theory for laser-assisted electron-atom scattering

    Get PDF
    A new version of the R-matrix Floquet theory for laser-assisted electron-atom scattering is presented. The theory is non-perturbative and applicable to a non-relativistic many-electron atom or ion in a homogeneous linearly polarized field. It is based on the use of channel functions built from field-dressed target states, which greatly simplifies the general formalism.Comment: 18 pages, LaTeX2e, submitted to J.Phys.

    Large-scale Breit-Pauli R-matrix calculations for transition probabilities of Fe V

    Get PDF
    Ab initio theoretical calculations are reported for the electric (E1) dipole allowed and intercombination fine structure transitions in Fe V using the Breit-Pauli R-matrix (BPRM) method. We obtain 3865 bound fine structure levels of Fe V and 1.46x1061.46 x 10^6 oscillator strengths, Einstein A-coefficients and line strengths. In addition to the relativistic effects, the intermediate coupling calculations include extensive electron correlation effects that represent the complex configuration interaction (CI). Fe V bound levels are obtained with angular and spin symmetries SLπSL\pi and JπJ\pi of the (e + Fe VI) system such that 2S+12S+1 = 5,3,1, L≀L \leq 10, J≀8J \leq 8. The bound levels are obtained as solutions of the Breit-Pauli (e + ion) Hamiltonian for each JπJ\pi, and are designated according to the `collision' channel quantum numbers. A major task has been the identification of these large number of bound fine structure levels in terms of standard spectroscopic designations. A new scheme, based on the analysis of quantum defects and channel wavefunctions, has been developed. The identification scheme aims particularly to determine the completeness of the results in terms of all possible bound levels for applications to analysis of experimental measurements and plasma modeling. An uncertainty of 10-20% for most transitions is estimated.Comment: 31 pages, 1 figure, Physica Scripta (in press

    Ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV above threshold

    Full text link
    We present here triple differential cross sections for ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV energy above threshold, calculated in the hyperspherical partial wave theory. The results are in very good agreement with the available semiclassical results of Deb and Crothers \cite{DC02} for these energies. With this, we are able to demonstrate that the hyperspherical partial wave theory yields good cross sections from 30 eV \cite{DPC03} down to near threshold for equal energy sharing kinematics.Comment: 6 pages, 9 figure

    Ionization potentials in the limit of large atomic number

    Full text link
    By extrapolating the energies of non-relativistic atoms and their ions with up to 3000 electrons within Kohn-Sham density functional theory, we find that the ionization potential remains finite and increases across a row, even as Z→∞Z\rightarrow\infty. The local density approximation becomes chemically accurate (and possibly exact) in some cases. Extended Thomas-Fermi theory matches the shell-average of both the ionization potential and density change. Exact results are given in the limit of weak electron-electron repulsion.Comment: 4 pages, 5 figure
    • 

    corecore