34 research outputs found

    Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique

    Get PDF
    Purpose: Patient-specific instrumentation (PSI) technology for the implantation of total knee arthroplasty (TKA) has a rising interest in the orthopaedic community. Data of PSI are controversially discussed. The hypothesis of this paper is that the radiological accuracy of CT-based PSI is similar to the one of navigated TKA published in the literature. Methods: Since 2010, all 301 consecutively performed PSI TKAs (GMK MyKnee©) were included in this study. The radiological assessment consisted in a preoperative and postoperative standard X-ray and long-standing X-ray. Changes from the planned to the definitively implanted component size were documented. Postoperative analysis included limb alignment and position of femoral and tibial components (for varus/valgus and flexion or tibial slope). Results: The postoperative average hip-knee-ankle angle was 180.1°±2.0°. In the frontal plane a total of 12.4% of outliers >3°, for the tibial components 4.1% of outliers >3° and for the femoral components 4.8% of outliers >3° were measured. A total of 12.3% of outliers for posterior tibial slope and 9% of outliers >3° for the femoral flexion were noted. 10.8% of the 602 planned size components were adapted intraoperatively. Conclusion: Although it is still unknown which limb axis is the correct one for the best clinical result, a technology providing the aimed axis in a most precise way should be chosen. Comparing the outcome of the current study with the data from the literature, there does not seem to be any difference compared to computer-assisted surgery. Level of evidence: I

    Multiprocessor raster plotting

    Get PDF
    A scalable multiprocessor raster image processor that generates printed circuit plots in alternating band buffers is described. Synchronous raster plotting systems and the development of mask creation for producing printed circuits are reviewed. The general architecture of the multiprocessing system that rasterizes printed circuit plot descriptions, and its graphics, load prediction, and facet size computation operations are discussed. Performance analysis results of two versions of the multiprocessor architecture, one with four rasterization transputers and the other with eight, are presente

    Multiprocessor raster plotting

    Full text link

    Measuring and Estimating GFR and Treatment Effect in ADPKD Patients: Results and Implications of a Longitudinal Cohort Study

    Get PDF
    Trials failed to demonstrate protective effects of investigational treatments on glomerular filtration rate (GFR) reduction in Autosomal Dominant Polycystic Kidney Disease (ADPKD). To assess whether above findings were explained by unreliable GFR estimates, in this academic study we compared GFR values centrally measured by iohexol plasma clearance with corresponding values estimated by Chronic Kidney Disease Epidemiology Collaboration (CKD-Epi) and abbreviated Modification of Diet in Renal Disease (aMDRD) formulas in ADPKD patients retrieved from four clinical trials run by a Clinical Research Center and five Nephrology Units in Italy. Measured baseline GFRs and one-year GFR changes averaged 78.6±26.7 and 8.4±10.3 mL/min/1.73 m2 in 111 and 71 ADPKD patients, respectively. CKD-Epi significantly overestimated and aMDRD underestimated baseline GFRs. Less than half estimates deviated by <10% from measured values. One-year estimated GFR changes did not detect measured changes. Both formulas underestimated GFR changes by 50%. Less than 9% of estimates deviated <10% from measured changes. Extent of deviations even exceeded that of measured one-year GFR changes. In ADPKD, prediction formulas unreliably estimate actual GFR values and fail to detect their changes over time. Direct kidney function measurements by appropriate techniques are needed to adequately evaluate treatment effects in clinics and research

    Radiographic accuracy in TKA with a CT-based patient-specific cutting block technique

    Full text link
    PURPOSE: Patient-specific instrumentation (PSI) technology for the implantation of total knee arthroplasty (TKA) has a rising interest in the orthopaedic community. Data of PSI are controversially discussed. The hypothesis of this paper is that the radiological accuracy of CT-based PSI is similar to the one of navigated TKA published in the literature. METHODS: Since 2010, all 301 consecutively performed PSI TKAs (GMK MyKnee©) were included in this study. The radiological assessment consisted in a preoperative and postoperative standard X-ray and long-standing X-ray. Changes from the planned to the definitively implanted component size were documented. Postoperative analysis included limb alignment and position of femoral and tibial components (for varus/valgus and flexion or tibial slope). RESULTS: The postoperative average hip-knee-ankle angle was 180.1° ± 2.0°. In the frontal plane a total of 12.4 % of outliers >3°, for the tibial components 4.1 % of outliers >3° and for the femoral components 4.8 % of outliers >3° were measured. A total of 12.3 % of outliers for posterior tibial slope and 9 % of outliers >3° for the femoral flexion were noted. 10.8 % of the 602 planned size components were adapted intraoperatively. CONCLUSION: Although it is still unknown which limb axis is the correct one for the best clinical result, a technology providing the aimed axis in a most precise way should be chosen. Comparing the outcome of the current study with the data from the literature, there does not seem to be any difference compared to computer-assisted surgery. LEVEL OF EVIDENCE: IV

    Evaluation of noise in the neonatal intensive care unit

    No full text
    This study evaluated the noise level inside the incubators in a neonatal intensive care unit and identified its sources in order to attempt to reduce it. Although noise is not a proven risk factor as far as the sensory integrity of newborns is concerned, it is certainly an important cause of stress to them and a source of serious and dangerous changes in their behavioral and physiologic states. Noise recorded inside the incubators had two components. The first was background noise from the incubator motors, which varied from 74.2 to 79.9 dB, and was similar to environmental noise. The second source was impulsive events beyond 80 dB. These events were the result of voluntary and involuntary contact with the incubators' Plexiglas surface or to the abrupt opening and closing of their access ports. Considering its decibel levels and frequency, this latter component is undoubtedly an important source of stress to newborns. Moreover, these data reveal the need to train health care personnel on how to reduce such noise by taking more care in the handling of infants
    corecore