40 research outputs found

    Functional Network Changes in Hippocampal CA1 after Status Epilepticus Predict Spatial Memory Deficits in Rats

    Get PDF
    Status epilepticus (SE) is a common neurological emergency, which has been associated with subsequent cognitive impairments. Neuronal death in hippocampal CA1 is thought to be an important mechanism of these impairments. However, it is also possible that functional interactions between surviving neurons are important. In this study we recorded in vivo single-unit activity in the CA1 hippocampal region of rats while they performed a spatial memory task. From these data we constructed functional networks describing pyramidal cell interactions. To build the networks, we used maximum entropy algorithms previously applied only to in vitro data. We show that several months following SE pyramidal neurons display excessive neuronal synchrony and less neuronal reactivation during rest compared with those in healthy controls. Both effects predict rat performance in a spatial memory task. These results provide a physiological mechanism for SE-induced cognitive impairment and highlight the importance of the systems-level perspective in investigating spatial cognition

    Temporal Coordination of Hippocampal Neurons Reflects Cognitive Outcome Post-febrile Status Epilepticus

    Get PDF
    AbstractThe coordination of dynamic neural activity within and between neural networks is believed to underlie normal cognitive processes. Conversely, cognitive deficits that occur following neurological insults may result from network discoordination. We hypothesized that cognitive outcome following febrile status epilepticus (FSE) depends on network efficacy within and between fields CA1 and CA3 to dynamically organize cell activity by theta phase. Control and FSE rats were trained to forage or perform an active avoidance spatial task. FSE rats were sorted by those that were able to reach task criterion (FSE-L) and those that could not (FSE-NL). FSE-NL CA1 place cells did not exhibit phase preference in either context and exhibited poor cross-theta interaction between CA1 and CA3. FSE-L and control CA1 place cells exhibited phase preference at peak theta that shifted during active avoidance to the same static phase preference observed in CA3. Temporal coordination of neuronal activity by theta phase may therefore explain variability in cognitive outcome following neurological insults in early development

    Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    Get PDF
    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain

    Coding for spatial goals in the prelimbic/infralimbic area of the rat frontal cortex

    No full text
    Finding one's way in space requires a distributed neural network to support accurate spatial navigation. In the rat, this network likely includes the hippocampus and its place cells. Although such cells allow the organism to locate itself in the environment, an additional mechanism is required to specify the animal's goal. Here, we show that firing activity of neurons in medial prefrontal cortex (mPFC) reflects the motivational salience of places. We recorded mPFC neurons from rats performing a place navigation task, and found that a substantial proportion of cells in the prelimbic/infralimbic area had place fields. A much smaller proportion of cells with such properties was found in the dorsal anterior cingulate area. Furthermore, the distribution of place fields in prelimbic/infralimbic cells was not homogeneous: goal locations were overrepresented. Because such locations were spatially dissociated from rewards, we suggest that mPFC neurons might be responsible for encoding the rat's goals, a process necessary for path planning

    Spatial navigation and hippocampal place cell firing: the problem of goal encoding

    No full text
    International audienceSYNOPSIS Place cells are hippocampal neurons whose discharge is strongly related to a rat's location in the environment. The existence of such cells, combined with the reliable impairments seen in spatial tasks after hippocampal damage, has led to the proposal that place cells form part of an integrated neural system dedicated to spatial navigation. This hypothesis is supported by the strong relationships between place cell activity and spatial problem solving, which indicate that the place cell representation must be both functional and in register with the surroundings for the animal to perform correctly in spatial tasks. The place cell system nevertheless requires other essentia) elements to be competent, such as a component that specifies the overall goal of the animal and computes the path required to take the rat from its current location to the goal. Here, we propose a model of the neural network responsible for spatial navigation that includes goal coding and path selection. In this model, the hippocampal formation allows for place recognition, and stores the set of places that can be accessed from each position in the environment. The prefrontal cortex is responsible for encoding goal location and for route planning. The nucleus accumbens translates paths in neural space into appropriate locomotor activity that moves the animal towards the goal in real space. The complete model assumes that the hippocampal output to nucleus accumbens and prefrontal cortex provides information for generating solutions to spatial problems. In support of this model, we finally present preliminary evidence that the goal representation necessary for path planning might be encoded in the prelimbic/infralimbic region of the medial prefrontal cortex

    Emergence of Coordinated Activity in the Developing Entorhinal-Hippocampal Network

    No full text
    © The Author(s) 2018. Correlated activity in the entorhinal-hippocampal neuronal networks, supported by oscillatory and intermittent population activity patterns is critical for learning and memory. However, when and how correlated activity emerges in these networks during development remains largely unknown. Here, we found that during the first postnatal week in non-anaesthetized head-restrained rats, activity in the superficial layers of the medial entorhinal cortex (MEC) and hippocampus was highly correlated, with intermittent population bursts in the MEC followed by early sharp waves (eSPWs) in the hippocampus. Neurons in the superficial MEC layers fired before neurons in the dentate gyrus, CA3 and CA1. eSPW current-source density profiles indicated that perforant/temporoammonic entorhinal inputs and intrinsic hippocampal connections are co-activated during entorhinal-hippocampal activity bursts. Finally, a majority of the entorhinal-hippocampal bursts were triggered by spontaneous myoclonic body movements, characteristic of the neonatal period. Thus, during the neonatal period, activity in the entorhinal cortex (EC) and hippocampus is highly synchronous, with the EC leading hippocampal activation. We propose that such correlated activity is embedded into a large-scale bottom-up circuit that processes somatosensory feedback resulting from neonatal movements, and that it is likely to instruct the development of connections between neocortex and hippocampus

    Emergence of Coordinated Activity in the Developing Entorhinal-Hippocampal Network

    No full text
    © The Author(s) 2018. Correlated activity in the entorhinal-hippocampal neuronal networks, supported by oscillatory and intermittent population activity patterns is critical for learning and memory. However, when and how correlated activity emerges in these networks during development remains largely unknown. Here, we found that during the first postnatal week in non-anaesthetized head-restrained rats, activity in the superficial layers of the medial entorhinal cortex (MEC) and hippocampus was highly correlated, with intermittent population bursts in the MEC followed by early sharp waves (eSPWs) in the hippocampus. Neurons in the superficial MEC layers fired before neurons in the dentate gyrus, CA3 and CA1. eSPW current-source density profiles indicated that perforant/temporoammonic entorhinal inputs and intrinsic hippocampal connections are co-activated during entorhinal-hippocampal activity bursts. Finally, a majority of the entorhinal-hippocampal bursts were triggered by spontaneous myoclonic body movements, characteristic of the neonatal period. Thus, during the neonatal period, activity in the entorhinal cortex (EC) and hippocampus is highly synchronous, with the EC leading hippocampal activation. We propose that such correlated activity is embedded into a large-scale bottom-up circuit that processes somatosensory feedback resulting from neonatal movements, and that it is likely to instruct the development of connections between neocortex and hippocampus
    corecore