195 research outputs found

    Intravascular tissue reactions induced by various types of bioabsorbable polymeric materials: correlation between the degradation profiles and corresponding tissue reactions

    Get PDF
    Several different bioabsorbable polymeric coil materials are currently used with the goal of improving treatment outcomes of endovascular embolization of intracranial aneurysms. However, little is known about the correlation between polymer degradation profiles and concomitant tissue responses in a blood vessel. The authors describe in vitro degradation characteristics of nine different polymeric materials and their corresponding tissue responses induced in rabbit carotid arteries. Mass loss and molecular weight loss of nine commercially available bioabsorbable sutures were evaluated in vitro up to16 weeks. The same nine materials, as well as platinum coils, were implanted into blind-end carotid arteries (n = 44) in rabbits, and their tissue reactions were evaluated histologically 14 days after the implantation. Five of the nine polymers elicited moderate to strong tissue reactions relative to the remaining materials. While polymer mass loss did not correlate with their histologic findings, polymers that showed a faster rate of molecular weight loss had a tendency to present more active tissue reactions such as strong fibrocellular response around the implanted material with a moderate inflammatory cell infiltration. Maxon exhibited the fastest rate of molecular weight loss and poly-l-lactic acid the slowest. The rate of molecular weight loss may be an important factor that is associated with the degree of bioactivity when bioabsorbable polymers are implanted into blood vessels. For further quantitative analysis, additional experiments utilizing established aneurysm models need to be conducted

    Circulating syndecan-1 is reduced in pregnancies with poor fetal growth and its secretion regulated by matrix metalloproteinases and the mitochondria

    Get PDF
    Fetal growth restriction is a leading cause of stillbirth that often remains undetected during pregnancy. Identifying novel biomarkers may improve detection of pregnancies at risk. This study aimed to assess syndecan-1 as a biomarker for small for gestational age (SGA) or fetal growth restricted (FGR) pregnancies and determine its molecular regulation. Circulating maternal syndecan-1 was measured in several cohorts; a large prospective cohort collected around 36 weeks' gestation (n = 1206), a case control study from the Manchester Antenatal Vascular service (285 women sampled at 24-34 weeks' gestation); two prospective cohorts collected on the day of delivery (36 + 3-41 + 3 weeks' gestation, n = 562 and n = 405 respectively) and a cohort who delivered for preterm FGR (< 34 weeks). Circulating syndecan-1 was consistently reduced in women destined to deliver growth restricted infants and those delivering for preterm disease. Syndecan-1 secretion was reduced by hypoxia, and its loss impaired proliferation. Matrix metalloproteinases and mitochondrial electron transport chain inhibitors significantly reduced syndecan-1 secretion, an effect that was rescued by coadministration of succinate, a mitochondrial electron transport chain activator. In conclusion, circulating syndecan-1 is reduced among cases of term and preterm growth restriction and has potential for inclusion in multi-marker algorithms to improve detection of poorly grown fetuses

    Exposure–response relationship of AMG 386 in combination with weekly paclitaxel in recurrent ovarian cancer and its implication for dose selection

    Get PDF
    To characterize exposure-response relationships of AMG 386 in a phase 2 study in advanced ovarian cancer for the facilitation of dose selection in future studies.A population pharmacokinetic model of AMG 386 (N = 141) was developed and applied in an exposure-response analysis using data from patients (N = 160) with recurrent ovarian cancer who received paclitaxel plus AMG 386 (3 or 10 mg/kg once weekly) or placebo. Reduction in the risk of progression or death with increasing exposure (steady-state area under the concentration-versus-time curve [AUC(ss)]) was assessed using Cox regression analyses. Confounding factors were tested in multivariate analysis. Alternative AMG 386 doses were explored with Monte Carlo simulations using population pharmacokinetic and parametric survival models.There was a trend toward increased PFS with increased AUC(ss) (hazard ratio [HR] for each one-unit increment in AUC(ss), 0.97; P = 0.097), suggesting that the maximum effect on prolonging PFS was not achieved at the highest dose tested (10 mg/kg). Among patients with AUC(ss) ≥ 9.6 mg h/mL, PFS was 8.1 months versus 5.7 months for AUC(ss) &lt; 9.6 mg h/mL and 4.6 months for placebo. No relationship between AUC(ss) and grade ≥ 3 adverse events was observed. Simulations predicted that AMG 386 15 mg/kg once weekly would result in an AUC(ss) ≥ 9.6 mg h/mL in &gt; 90% of patients with median PFS of 8.2 months versus 5.0 months for placebo (HR [15 mg/kg vs. placebo], 0.56).Increased exposure to AMG 386 was associated with improved clinical outcomes in recurrent ovarian cancer, supporting the evaluation of a higher dose in future studies

    Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statins are a class of medications that reduce cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Whether statins can benefit patients with dementia remains unclear because of conflicting results. We hypothesized that some of the confusion in the literature might arise from differences in efficacy of different statins. We used a large database to compare the action of several different statins to investigate whether some statins might be differentially associated with a reduction in the incidence of dementia and Parkinson's disease.</p> <p>Methods</p> <p>We analyzed data from the decision support system of the US Veterans Affairs database, which contains diagnostic, medication and demographic information on 4.5 million subjects. The association of lovastatin, simvastatin and atorvastatin with dementia was examined with Cox proportional hazard models for subjects taking statins compared with subjects taking cardiovascular medications other than statins, after adjusting for covariates associated with dementia or Parkinson's disease.</p> <p>Results</p> <p>We observed that simvastatin is associated with a significant reduction in the incidence of dementia in subjects ≥65 years, using any of three models. The first model incorporated adjustment for age, the second model included adjusted for three known risk factors for dementia, hypertension, cardiovascular disease or diabetes, and the third model incorporated adjustment for the Charlson index, which is an index that provides a broad assessment of chronic disease. Data were obtained for over 700000 subjects taking simvastatin and over 50000 subjects taking atorvastatin who were aged >64 years. Using model 3, the hazard ratio for incident dementia for simvastatin and atorvastatin are 0.46 (CI 0.44–0.48, <it>p </it>< 0.0001) and 0.91 (CI 0.80–1.02, <it>p </it>= 0.11), respectively. Lovastatin was not associated with a reduction in the incidence of dementia. Simvastatin also exhibited a reduced hazard ratio for newly acquired Parkinson's disease (HR 0.51, CI 0.4–0.55, <it>p </it>< 0.0001).</p> <p>Conclusion</p> <p>Simvastatin is associated with a strong reduction in the incidence of dementia and Parkinson's disease, whereas atorvastatin is associated with a modest reduction in incident dementia and Parkinson's disease, which shows only a trend towards significance.</p

    PKCε Stimulated Arginine Methylation of RIP140 for Its Nuclear-Cytoplasmic Export in Adipocyte Differentiation

    Get PDF
    Receptor interacting protein 140 (RIP140) is a versatile transcriptional co-repressor that plays roles in diverse metabolic processes including fat accumulation in adipocytes. Previously we identified three methylated arginine residues in RIP140, which rendered its export to the cytoplasm; but it was unclear what triggered RIP140 arginine methylation.In this study, we determined the activated PKCepsilon as the specific trigger for RIP140 arginine methylation and its subsequent export. We identified two PKCepsilon-phosphorylated residues of RIP140, Ser-102 and Ser-1003, which synergistically stimulated direct binding of RIP140 by 14-3-3 that recruited protein arginine methyl transferase 1 to methylate RIP140. The methylated RIP140 then preferentially recruited exportin 1 for nuclear export. As a result, the nuclear gene-repressive activity of RIP140 was reduced. In RIP140 null adipocyte cultures, the defect in fat accumulation was effectively rescued by the phosphorylation-deficient mutant RIP140 that resided predominantly in the nucleus, but less so by the phospho-mimetic RIP140 that was exported to the cytoplasm.This study uncovers a novel means, via a cascade of protein modifications, to inactivate, or suppress, the nuclear action of an important transcription coregulator RIP140, and delineates the first specific phosphorylation-arginine methylation cascade that could alter protein subcellular distribution and biological activity

    Computational Fluid Dynamics of Catalytic Reactors

    Get PDF
    Today, the challenge in chemical and material synthesis is not only the development of new catalysts and supports to synthesize a desired product, but also the understanding of the interaction of the catalyst with the surrounding flow field. Computational Fluid Dynamics or CFD is the analysis of fluid flow, heat and mass transfer and chemical reactions by means of computer-based numerical simulations. CFD has matured into a powerful tool with a wide range of applications in industry and academia. From a reaction engineering perspective, main advantages are reduction of time and costs for reactor design and optimization, and the ability to study systems where experiments can hardly be performed, e.g., hazardous conditions or beyond normal operation limits. However, the simulation results will always remain a reflection of the uncertainty in the underlying models and physicochemical parameters so that in general a careful experimental validation is required. This chapter introduces the application of CFD simulations in heterogeneous catalysis. Catalytic reactors can be classified by the geometrical design of the catalyst material (e.g. monoliths, particles, pellets, washcoats). Approaches for modeling and numerical simulation of the various catalyst types are presented. Focus is put on the principal concepts for coupling the physical and chemical processes on different levels of details, and on illustrative applications. Models for surface reaction kinetics and turbulence are described and an overview on available numerical methods and computational tools is provided

    National and regional estimates of term and preterm babies born small for gestational age in 138 low-income and middle-income countries in 2010.

    Get PDF
    BACKGROUND: National estimates for the numbers of babies born small for gestational age and the comorbidity with preterm birth are unavailable. We aimed to estimate the prevalence of term and preterm babies born small for gestational age (term-SGA and preterm-SGA), and the relation to low birthweight (<2500 g), in 138 countries of low and middle income in 2010. METHODS: Small for gestational age was defined as lower than the 10th centile for fetal growth from the 1991 US national reference population. Data from 22 birth cohort studies (14 low-income and middle-income countries) and from the WHO Global Survey on Maternal and Perinatal Health (23 countries) were used to model the prevalence of term-SGA births. Prevalence of preterm-SGA infants was calculated from meta-analyses. FINDINGS: In 2010, an estimated 32·4 million infants were born small for gestational age in low-income and middle-income countries (27% of livebirths), of whom 10·6 million infants were born at term and low birthweight. The prevalence of term-SGA babies ranged from 5·3% of livebirths in east Asia to 41·5% in south Asia, and the prevalence of preterm-SGA infants ranged from 1·2% in north Africa to 3·0% in southeast Asia. Of 18 million low-birthweight babies, 59% were term-SGA and 41% were preterm-SGA. Two-thirds of small-for-gestational-age infants were born in Asia (17·4 million in south Asia). Preterm-SGA babies totalled 2·8 million births in low-income and middle-income countries. Most small-for-gestational-age infants were born in India, Pakistan, Nigeria, and Bangladesh. INTERPRETATION: The burden of small-for-gestational-age births is very high in countries of low and middle income and is concentrated in south Asia. Implementation of effective interventions for babies born too small or too soon is an urgent priority to increase survival and reduce disability, stunting, and non-communicable diseases. FUNDING: Bill & Melinda Gates Foundation by a grant to the US Fund for UNICEF to support the activities of the Child Health Epidemiology Reference Group (CHERG)

    Characterization of different FAD-dependent glucose dehydrogenases for possible use in glucose-based biosensors and biofuel cells

    Get PDF
    In this study, different flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenases (FADGDHs) were characterized electrochemically after “wiring” them with an osmium redox polymer [Os(4,4′-dimethyl-2,2′-bipyridine)2(PVI)10Cl]+ on graphite electrodes. One tested FADGDH was that recently discovered in Glomerella cingulata (GcGDH), another was the recombinant form expressed in Pichia pastoris (rGcGDH), and the third was a commercially available glycosylated enzyme from Aspergillus sp. (AspGDH). The performance of the Os-polymer “wired” GDHs on graphite electrodes was tested with glucose as the substrate. Optimal operational conditions and analytical characteristics like sensitivity, linear ranges and current density of the different FADGDHs were determined. The performance of all three types of FADGDHs was studied at physiological conditions (pH 7.4). The current densities measured at a 20 mM glucose concentration were 494 ± 17, 370 ± 24, and 389 ± 19 μA cm−2 for GcGDH, rGcGDH, and AspGDH, respectively. The sensitivities towards glucose were 2.16, 1.90, and 1.42 μA mM−1 for GcGDH, rGcGDH, and AspGDH, respectively. Additionally, deglycosylated rGcGDH (dgrGcGDH) was investigated to see whether the reduced glycosylation would have an effect, e.g., a higher current density, which was indeed found. GcGDH/Os-polymer modified electrodes were also used and investigated for their selectivity for a number of different sugars
    corecore