466 research outputs found

    Willing and able: action-state orientation and the relation between procedural justice and employee cooperation

    Get PDF
    Existing justice theory explains why fair procedures motivate employees to adopt cooperative goals, but it fails to explain how employees strive towards these goals. We study self-regulatory abilities that underlie goal striving; abilities that should thus affect employees’ display of cooperative behavior in response to procedural justice. Building on action control theory, we argue that employees who display effective self-regulatory strategies (action oriented employees) display relatively strong cooperative behavioral responses to fair procedures. A multisource field study and a laboratory experiment support this prediction. A subsequent experiment addresses the process underlying this effect by explicitly showing that action orientation facilitates attainment of the cooperative goals that people adopt in response to fair procedures, thus facilitating the display of actual cooperative behavior. This goal striving approach better integrates research on the relationship between procedural justice and employee cooperation in the self-regulation and the work motivation literature. It also offers organizations a new perspective on making procedural justice effective in stimulating employee cooperation by suggesting factors that help employees reach their adopted goals

    Enhancing anti-tumor immunity through liposomal oxaliplatin and localized immunotherapy via STING activation

    Get PDF
    The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is a promising approach for anti-cancer immunotherapy by bridging innate and adaptive immunity. Recent evidence suggests that chemotherapy-induced DNA damage can directly induce dendritic cell (DC) maturation and recruitment, which synergizes with STING activation to enhance anti-tumor effects. As an immunogenic cell death (ICD) inducer, oxaliplatin generates massive double-stranded DNA (dsDNA) crosslinks, release of tumor-associated antigens and promoting the "eat me" signal. STING activation improves antigen immunogenicity, which can promote T cell activation and infiltration. In this study, we developed liposomes encapsulating oxaliplatin and combine this formulation with a STING agonist (ADU-S100) for treating colorectal cancer. The liposomes efficiently inhibited the proliferation of tumor cells while induced ICD in CT26 colorectal cancer cells, which enhanced dendritic cell maturation and phagocytosis in vitro. The liposome-based immunochemotherapy exhibited the strongest efficacy, resulting in complete remission upon tumor inoculation. Mechanistic studies showed this potent anti-cancer effect was related to the significant recruitment of infiltrating CD8 and CD4 T cells, reduction of suppressive Treg cells, and a shift in the phenotype of tumor-associated suppressive macrophages that promote cancer to immune stimulating macrophages. Thus, our study demonstrated the potential of combining oxaliplatin-loaded liposomes with a STING agonist to reduce tumor growth by regulating the immunosuppressive state in the tumor.Horizon 2020 (H2020)777682TumorimmunologyRadiolog

    Development of a 96-well plate sample preparation method for integratedN- andO-glycomics using porous graphitized carbon liquid chromatography-mass spectrometry

    Get PDF
    Changes in glycosylation signatures of cells have been associated with pathological processes in cancer as well as infectious and autoimmune diseases. The current protocols for comprehensive analysis ofN-glycomics andO-glycomics derived from cells and tissues often require a large amount of biological material. They also only allow the processing of very limited numbers of samples at a time. Here we established a workflow for sequential release ofN-glycans andO-glycans based on PVDF membrane immobilization in 96-well format from 5 x 10(5)cells. Released glycans are reduced, desalted, purified, and reconstituted, all in 96-well format plates, without additional staining or derivatization. Glycans are then analyzed with porous graphitized carbon nano-liquid chromatography coupled to tandem mass spectrometry using negative-mode electrospray ionization, enabling the chromatographic resolution and structural elucidation of glycan species including many compositional isomers. The approach was demonstrated using glycoprotein standards and further applied to analyze the glycosylation of the murine mammary gland NMuMG cell line. The developed protocol allows the analysis ofN- andO-glycans from relatively large numbers of samples in a less time consuming way with high repeatability. Inter- and intraday repeatability of the fetuinN-glycan analysis showed two median intraday coefficients of variations (CVs) of 7.6% and 8.0%, and a median interday CV of 9.8%. Median CVs of 7.9% and 8.7% for the main peaks ofN- andO-glycans released from the NMuMG cell line indicate a very good repeatability. The method is applicable to purified glycoproteins as well as to biofluids and cell- or tissue-based samples.Cancer Signaling networks and Molecular Therapeutic

    The development of the advanced web shop based on purchase history

    Get PDF
    The goal of thesis is to develop a typical web shop application with some additional functionality. This functionality enables web shop customers to browse products in a more efficient way and thus makes shop more profitable. For this purpose, we developed a specific mechanism that handles product presentation in customer adapted way. First we describe technologies used for development. Programing language C# is presented shortly as well as some other frameworks (ASP.net, Entity framework,), libraries (LINQ) and other web technologies (HTML, CSS, AJAX). For storing and manipulating data a database with tables in MS SQL database is created. Furthermore we take a look at requirements, idea and logic of solution. We present solution design and present how specific functionality behaves in case of different user types. We present a solution analysis where a comparison with other similar solutions and user tests are shown. Finally we discuss problems during the development and possibilities about the future improvements

    Regulation of endothelial cell plasticity by TGF-β

    Get PDF
    Recent evidence has demonstrated that endothelial cells can have a remarkable plasticity. By a process called Endothelial-to-Mesenchymal Transition (EndMT) endothelial cells convert to a more mesenchymal cell type that can give rise to cells such as fibroblasts, but also bone cells. EndMT is essential during embryonic development and tissue regeneration. Interestingly, it also plays a role in pathological conditions like fibrosis of organs such as the heart and kidney. In addition, EndMT contributes to the generation of cancer associated fibroblasts that are known to influence the tumor-microenvironment favorable for the tumor cells. EndMT is a form of the more widely known and studied Epithelial-to-Mesenchymal Transition (EMT). Like EMT, EndMT can be induced by transforming growth factor (TGF)-β. Indeed many studies have pointed to the important role of TGF-β receptor/Smad signaling and downstream targets, such as Snail transcriptional repressor in EndMT. By selective targeting of TGF-β receptor signaling pathological EndMT may be inhibited for the therapeutic benefit of patients with cancer and fibrosis

    The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system

    Full text link
    Transforming growth factor-beta (TGF-beta) has opposing roles in breast cancer progression by acting as a tumor suppressor in the initial phase, but stimulating invasion and metastasis at later stages. In contrast to the mechanisms by which TGF-beta induces growth arrest, the pathways that mediate tumor invasion are not well understood. Here, we describe a TGF-beta-dependent invasion assay system consisting of spheroids of MCF10A1 normal breast epithelial cells (M1) and RAS-transformed (pre-)malignant derivatives (M2 and M4) embedded in collagen gels. Both basal and TGF-beta-induced invasion of these cell lines was found to correlate with their tumorigenic potential; M4 showing the most aggressive behavior and M1 showing the least. Basal invasion was strongly inhibited by the TGF-beta receptor kinase inhibitor SB-431542, indicating the involvement of autocrine TGF-beta or TGF-beta-like activity. TGF-beta-induced invasion in premalignant M2 and highly malignant M4 cells was also inhibited upon specific knockdown of Smad3 or Smad4. Interestingly, both a broad spectrum matrix metalloproteinase (MMP) inhibitor and a selective MMP2 and MMP9 inhibitor mitigated TGF-beta-induced invasion of M4 cells, while leaving basal invasion intact. In line with this, TGF-beta was found to strongly induce MMP2 and MMP9 expression in a Smad3- and Smad4-dependent manner. This collagen-embedded spheroid system therefore offers a valuable screening model for TGF-beta/Smad- and MMP2- and MMP9-dependent breast cancer invasion.Urolog

    Intertumoral differences dictate the outcome of TGF-β blockade on the efficacy of viro-immunotherapy

    Get PDF
    The absence of T cells in the tumor microenvironment of solid tumors is a major barrier to cancer immunotherapy efficacy. Oncolytic viruses, including reovirus type 3 Dearing (Reo), can recruit CD8+ T cells to the tumor and thereby enhance the efficacy of immunotherapeutic strategies that depend on high T-cell density, such as CD3-bispecific antibody (bsAb) therapy. TGF-β signaling might represent another barrier to effective Reo&CD3-bsAb therapy due to its immunoinhibitory characteristics. Here, we investigated the effect of TGF-β blockade on the antitumor efficacy of Reo&CD3-bsAb therapy in the preclinical pancreatic KPC3 and colon MC38 tumor models, where TGF-β signaling is active. TGF-β blockade impaired tumor growth in both KPC3 and MC38 tumors. Furthermore, TGF-β blockade did not affect reovirus replication in both models and significantly enhanced the Reo-induced T-cell influx in MC38 colon tumors. Reo administration decreased TGF-β signaling in MC38 tumors but instead increased TGF-β activity in KPC3 tumors, resulting in the accumulation of α-smooth muscle actin (αSMA+) fibroblasts. In KPC3 tumors, TGF-β blockade antagonized the antitumor effect of Reo&CD3-bsAb therapy, even though T-cell influx and activity were not impaired. Moreover, genetic loss of TGF-β signaling in CD8+ T cells had no effect on therapeutic responses. In contrast, TGF-β blockade significantly improved therapeutic efficacy of Reo&CD3-bsAb in mice bearing MC38 colon tumors, resulting in a 100% complete response. Further understanding of the factors that determine this intertumor dichotomy is required before TGF-β inhibition can be exploited as part of viroimmunotherapeutic combination strategies to improve their clinical benefit.Significance:Blockade of the pleiotropic molecule TGF-β can both improve and impair the efficacy of viro-immunotherapy, depending on the tumor model. While TGF-β blockade antagonized Reo&CD3-bsAb combination therapy in the KPC3 model for pancreatic cancer, it resulted in 100% complete responses in the MC38 colon model. Understanding factors underlying this contrast is required to guide therapeutic application.Cancer Signaling networks and Molecular Therapeutic
    • …
    corecore