111 research outputs found

    Expression of microRNAs and isomiRs in the porcine endometrium: implications for gene regulation at the maternal-conceptus interface

    Get PDF
    Background: Embryo implantation is a complex, synchronized process that requires establishment of a reciprocal dialogue between a receptive endometrium and developing blastocysts. Recently, microRNAs (miRNAs),known to modulate gene expression through post-transcriptional mechanisms, were implicated in regulation of early pregnancy events including maternal recognition of pregnancy and implantation. To characterize complex transcriptomic changes, expression of miRNAs in pregnant and cyclic endometria collected on days 12, 16 and 20 was analyzed using Illumina deep sequencing and analyzed with bioinformatic pipeline. Moreover, expression profiles of ten genes related to miRNA synthesis and transport such as DROSHA, DGCR8, XPO5, DICER, TARBP2, TNRC6A, and AGO1-4 were determined. Results: Among genes involved in miRNA transport and synthesis DROSHA, XPO5, DICER1, TARBP, and AGO1 expression was affected by the reproductive status. Moreover, DICER1 and AGO2 proteins were localized in luminal and glandular epithelium with immunofluorescence staining. Several hundred mature, canonical and non-canonical miRNAs were found to be expressed in the endometrial samples. Detailed analysis revealed that miRNA length variants, isomiRs, accounted for the vast majority of defined sequences. Both miRNA and isomiR of miR-140-3p were shown to affect expression of putative targets in endometrial stromal cells in vitro. Computational analysis of putative target genes for miRNAs differentially expressed (DE) between pregnant and cyclic animals resulted in lists of biological processes and regulatory pathways indicating their role in cellular development, cell cycle, immunological response and organismal development. Among predicted target genes for DE miRNAs, vascular endothelial growth factor (VEGF),progesterone and estradiol receptors (PGR, ESR1) and leukemia inhibitory factor (LIF) were found. Conclusions: This research revealed a repertoire of pregnancy-related miRNAs in porcine endometrium during initial stages of conceptus implantation and during the estrous cycle, and sheds light on mechanisms regulating miRNA-mediated gene expression at the maternal-conceptus interface

    A Dual-Readout F2 Assay That Combines Fluorescence Resonance Energy Transfer and Fluorescence Polarization for Monitoring Bimolecular Interactions

    Full text link
    Forster (fluorescence) resonance energy transfer (FRET) and fluorescence polarization (FP) are widely used technologies for monitoring bimolecular interactions and have been extensively used in high-throughput screening (HTS) for probe and drug discovery. Despite their popularity in HTS, it has been recognized that different assay technologies may generate different hit lists for the same biochemical interaction. Due to the high cost of large-scale HTS campaigns, one has to make a critical choice to employee one assay platform for a particular HTS. Here we report the design and development of a dual-readout HTS assay that combines two assay technologies into one system using the Mcl-1 and Noxa BH3 peptide interaction as a model system. In this system, both FP and FRET signals were simultaneously monitored from one reaction, which is termed -Dual-Readout F2 assay- with F2 for FP and FRET. This dual-readout technology has been optimized in a 1,536-well ultra-HTS format for the discovery of Mcl-1 protein inhibitors and achieved a robust performance. This F2 assay was further validated by screening a library of 102,255 compounds. As two assay platforms are utilized for the same target simultaneously, hit information is enriched without increasing the screening cost. This strategy can be generally extended to other FP-based assays and is expected to enrich primary HTS information and enhance the hit quality of HTS campaigns.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90469/1/adt-2E2010-2E0292.pd

    Molecular Characterization of the Onset and Progression of Colitis in Inoculated Interleukin-10 Gene-Deficient Mice: A Role for PPARα

    Get PDF
    The interleukin-10 gene-deficient (Il10−/−) mouse is a model of human inflammatory bowel disease and Ppara has been identified as one of the key genes involved in regulation of colitis in the bacterially inoculated Il10−/− model. The aims were to (1) characterize colitis onset and progression using a histopathological, transcriptomic, and proteomic approach and (2) investigate links between PPARα and IL10 using gene network analysis. Bacterial inoculation resulted in severe colitis in Il10−/− mice from 10 to 12 weeks of age. Innate and adaptive immune responses showed differences in gene expression relating to colitis severity. Actin cytoskeleton dynamics, innate immunity, and apoptosis-linked gene and protein expression data suggested a delayed remodeling process in 12-week-old Il10−/− mice. Gene expression changes in 12-week-old Il10−/− mice were related to PPARα signaling likely to control colitis, but how PPARα activation might regulate intestinal IL10 production remains to be determined

    Mutated Ptpn11 alters leukemic stem cell frequency and reduces the sensitivity of acute myeloid leukemia cells to Mcl1 inhibition

    Get PDF
    PTPN11 encodes the Shp2 non-receptor protein-tyrosine phosphatase implicated in several signaling pathways. Activating mutations in Shp2 are commonly associated with juvenile myelomonocytic leukemia but are not as well defined in other neoplasms. Here we report that Shp2 mutations occur in human acute myeloid leukemia (AML) at a rate of 6.6% (6/91) in the ECOG E1900 data set. We examined the role of mutated Shp2 in leukemias harboring MLL translocations, which co-occur in human AML. The hyperactive Shp2E76K mutant, commonly observed in leukemia patients, significantly accelerated MLL-AF9-mediated leukemogenesis in vivo. Shp2E76K increased leukemic stem cell frequency and affords MLL-AF9 leukemic cells IL3 cytokine hypersensitivity. As Shp2 is reported to regulate anti-apoptotic genes, we investigated Bcl2, Bcl-xL and Mcl1 expression in MLL-AF9 leukemic cells with and without Shp2E76K. Although the Bcl2 family of genes was upregulated in Shp2E76K cells, Mcl1 showed the highest upregulation in MLL-AF9 cells in response to Shp2E76K. Indeed, expression of Mcl1 in MLL-AF9 cells phenocopies expression of Shp2E76K, suggesting Shp2 mutations cooperate through activation of anti-apoptotic genes. Finally, we show Shp2E76K mutations reduce sensitivity of AML cells to small-molecule-mediated Mcl1 inhibition, suggesting reduced efficacy of drugs targeting MCL1 in patients with hyperactive Shp2

    Controlling exchange bias in Fe3O4/FeO composite particles prepared by pulsed laser irradiation

    Get PDF
    Spherical iron oxide nanocomposite particles composed of magnetite and wustite have been successfully synthesized using a novel method of pulsed laser irradiation in ethyl acetate. Both the size and the composition of nanocomposite particles are controlled by laser irradiation condition. Through tuning the laser fluence, the Fe3O4/FeO phase ratio can be precisely controlled, and the magnetic properties of final products can also be regulated. This work presents a successful example of the fabrication of ferro (ferri) (FM)/antiferromagnetic (AFM) systems with high chemical stability. The results show this novel simple method as widely extendable to various FM/AFM nanocomposite systems

    ELK1 Uses Different DNA Binding Modes to Regulate Functionally Distinct Classes of Target Genes

    Get PDF
    Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP–seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled

    Molecular origin of enhanced proton conductivity in anhydrous ionic systems

    Get PDF
    YesIonic systems with enhanced proton conductivity are widely viewed as promising electrolytes in fuel cells and batteries. Nevertheless, a major challenge toward their commercial applications is determination of the factors controlling the fast proton hopping in anhydrous conditions. To address this issue, we have studied novel proton-conducting materials formed via a chemical reaction of lidocaine base with a series of acids characterized by a various number of proton-active sites. From ambient and high pressure experimental data, we have found that there are fundamental differences in the conducting properties of the examined salts. On the other hand, DFT calculations revealed that the internal proton hopping within the cation structure strongly affects the pathways of mobility of the charge carrier. These findings offer a fresh look on the Grotthuss-type mechanism in protic ionic glasses as well as provide new ideas for the design of anhydrous materials with exceptionally high proton conductivity

    Racial differences in systemic sclerosis disease presentation: a European Scleroderma Trials and Research group study

    Get PDF
    Objectives. Racial factors play a significant role in SSc. We evaluated differences in SSc presentations between white patients (WP), Asian patients (AP) and black patients (BP) and analysed the effects of geographical locations.Methods. SSc characteristics of patients from the EUSTAR cohort were cross-sectionally compared across racial groups using survival and multiple logistic regression analyses.Results. The study included 9162 WP, 341 AP and 181 BP. AP developed the first non-RP feature faster than WP but slower than BP. AP were less frequently anti-centromere (ACA; odds ratio (OR) = 0.4, P < 0.001) and more frequently anti-topoisomerase-I autoantibodies (ATA) positive (OR = 1.2, P = 0.068), while BP were less likely to be ACA and ATA positive than were WP [OR(ACA) = 0.3, P < 0.001; OR(ATA) = 0.5, P = 0.020]. AP had less often (OR = 0.7, P = 0.06) and BP more often (OR = 2.7, P < 0.001) diffuse skin involvement than had WP.AP and BP were more likely to have pulmonary hypertension [OR(AP) = 2.6, P < 0.001; OR(BP) = 2.7, P = 0.03 vs WP] and a reduced forced vital capacity [OR(AP) = 2.5, P < 0.001; OR(BP) = 2.4, P < 0.004] than were WP. AP more often had an impaired diffusing capacity of the lung than had BP and WP [OR(AP vs BP) = 1.9, P = 0.038; OR(AP vs WP) = 2.4, P < 0.001]. After RP onset, AP and BP had a higher hazard to die than had WP [hazard ratio (HR) (AP) = 1.6, P = 0.011; HR(BP) = 2.1, P < 0.001].Conclusion. Compared with WP, and mostly independent of geographical location, AP have a faster and earlier disease onset with high prevalences of ATA, pulmonary hypertension and forced vital capacity impairment and higher mortality. BP had the fastest disease onset, a high prevalence of diffuse skin involvement and nominally the highest mortality

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background: Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods: For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings: Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8-13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05-6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50-75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation: Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life
    • 

    corecore