293 research outputs found

    Species specific anaesthetics for fish anaesthesia and euthanasia.

    Get PDF
    There is a need to ensure that the care and welfare for fish maintained in the laboratory are to the highest standards. This extends to the use of anaesthetics for both scientific study, humane killing and euthanasia at end of life. An anaesthetic should not induce negative behaviours and fish should not seek to avoid the anaesthetic. Surprisingly little information is available to facilitate a humane choice of anaesthetic agent for fish despite over 100 years of use and the millions of fish currently held in thousands of laboratories worldwide. Using a chemotaxic choice chamber we found different species specific behavioural responses among four closely related fish species commonly held in the laboratory, exposed to three widely used anaesthetic agents. As previously found for zebrafish (Danio rerio), the use of MS-222 and benzocaine also appears to induce avoidance behaviours in medaka (Oryzias latipes); but etomidate could provide an alternative choice. Carp (Cyprinus carpio), although closely related to zebrafish showed avoidance behaviours to etomidate, but not benzocaine or MS-222; and rainbow trout (Oncorhynchus mykiss) showed no avoidance to the three agents tested. We were unable to ascertain avoidance responses in fathead minnows (Pimephales promelas) and suggest different test paradigms are required for that species

    Barrier-free subsurface incorporation of 3d metal atoms into Bi(111) films

    Get PDF
    By combining scanning tunneling microscopy with density functional theory it is shown that the Bi(111) surface provides a well-defined incorporation site in the first bilayer that traps highly coordinating atoms such as transition metals (TMs) or noble metals. All deposited atoms assume exactly the same specific sevenfold coordinated subsurface interstitial site while the surface topography remains nearly unchanged. Notably, 3d TMs show a barrier-free incorporation. The observed surface modification by barrier-free subsorption helps to suppress aggregation in clusters. It allows a tuning of the electronic properties not only for the pure Bi(111) surface, but may also be observed for topological insulators formed by substrate-stabilized Bi bilayers. © 2015 American Physical Society.DFG/SFB/616DFG/SPP/1601DFG/Pf238/3

    Sticking with the Pointy End? Molecular Configuration of Chloro Boron-Subphthalocyanine on Cu(111)

    Get PDF
    In this combined low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) study, we investigate self-assembly of the dipolar nonplanar organic semiconductor chloro boron-subphthalocyanine (ClB-SubPc) on Cu(111). We observe multiple distinct adsorption configurations and demonstrate that these can only be understood by taking surface-catalyzed dechlorination into account. A detailed investigation of possible adsorption configurations and the comparison of experimental and computational STM images demonstrates that the configurations correspond to “Cl-up” molecules with the B–Cl moiety pointing toward the vacuum side of the interface, and dechlorinated molecules. In contrast to the standard interpretation of adsorption of nonplanar molecules in the phthalocyanine family, we find no evidence for “Cl-down” molecules where the B–Cl moiety would be pointing toward the Cu surface. We show computationally that such a configuration is unstable and thus is highly unlikely to occur for ClB-SubPc on Cu(111). Using these assignments, we discuss the different self-assembly motifs in the submonolayer coverage regime. The combination of DFT and STM is essential to gain a full atomistic understanding of the surface–molecule interactions, and our findings imply that phthalocyanines may undergo surface-catalyzed reactions hitherto not considered. Our results also indicate that care has to be taken when analyzing possible adsorption configurations of polar members of the phthalocyanine family, especially when they are adsorbed on comparably reactive surfaces like Cu(111)

    A Szemeredi-Trotter type theorem in R4\mathbb{R}^4

    Full text link
    We show that mm points and nn two-dimensional algebraic surfaces in R4\mathbb{R}^4 can have at most O(mk2k−1n2k−22k−1+m+n)O(m^{\frac{k}{2k-1}}n^{\frac{2k-2}{2k-1}}+m+n) incidences, provided that the algebraic surfaces behave like pseudoflats with kk degrees of freedom, and that m≀n2k+23km\leq n^{\frac{2k+2}{3k}}. As a special case, we obtain a Szemer\'edi-Trotter type theorem for 2--planes in R4\mathbb{R}^4, provided m≀nm\leq n and the planes intersect transversely. As a further special case, we obtain a Szemer\'edi-Trotter type theorem for complex lines in C2\mathbb{C}^2 with no restrictions on mm and nn (this theorem was originally proved by T\'oth using a different method). As a third special case, we obtain a Szemer\'edi-Trotter type theorem for complex unit circles in C2\mathbb{C}^2. We obtain our results by combining several tools, including a two-level analogue of the discrete polynomial partitioning theorem and the crossing lemma.Comment: 50 pages. V3: final version. To appear in Discrete and Computational Geometr
    • 

    corecore