7,960 research outputs found
Split-sideband spectroscopy in slowly modulated optomechanics
Optomechanical coupling between the motion of a mechanical oscillator and a
cavity represents a new arena for experimental investigation of quantum effects
on the mesoscopic and macroscopic scale.The motional sidebands of the output of
a cavity offer ultra-sensitive probes of the dynamics. We introduce a scheme
whereby these sidebands split asymmetrically and show how they may be used as
experimental diagnostics and signatures of quantum noise limited dynamics. We
show split-sidebands with controllable asymmetry occur by simultaneously
modulating the light-mechanical coupling and - slowly and out
of-phase. Such modulations are generic but already occur in optically trapped
set-ups where the equilibrium point of the oscillator is varied cyclically. We
analyse recently observed, but overlooked, experimental split-sideband
asymmetries; although not yet in the quantum regime, the data suggests that
split sideband structures are easily accessible to future experiments
Cavity cooling a single charged nanoparticle
The development of laser cooling coupled with the ability to trap atoms and
ions in electromagnetic fields, has revolutionised atomic and optical physics,
leading to the development of atomic clocks, high-resolution spectroscopy and
applications in quantum simulation and processing. However, complex systems,
such as large molecules and nanoparticles, lack the simple internal resonances
required for laser cooling. Here we report on a hybrid scheme that uses the
external resonance of an optical cavity, combined with radio frequency (RF)
fields, to trap and cool a single charged nanoparticle. An RF Paul trap allows
confinement in vacuum, avoiding instabilities that arise from optical fields
alone, and crucially actively participates in the cooling process. This system
offers great promise for cooling and trapping a wide range of complex charged
particles with applications in precision force sensing, mass spectrometry,
exploration of quantum mechanics at large mass scales and the possibility of
creating large quantum superpositions.Comment: 8 pages, 5 figures Updated version includes additional references,
new title, and supplementary information include
Recommended from our members
An experimental investigation on the deformation of Fontainebleau sandstone
Efficient and realistic device modeling from atomic detail to the nanoscale
As semiconductor devices scale to new dimensions, the materials and designs
become more dependent on atomic details. NEMO5 is a nanoelectronics modeling
package designed for comprehending the critical multi-scale, multi-physics
phenomena through efficient computational approaches and quantitatively
modeling new generations of nanoelectronic devices as well as predicting novel
device architectures and phenomena. This article seeks to provide updates on
the current status of the tool and new functionality, including advances in
quantum transport simulations and with materials such as metals, topological
insulators, and piezoelectrics.Comment: 10 pages, 12 figure
Avaliação de cultivares e linhagens de arroz irrigado no Vale do ParaÃba, Estado de São Paulo.
No presente trabalho procurou-se identificar cultivares e linhagens com alto potencial produtivo e resistência a estresses bióticos e abióticos para a região, com o objetivo de dar maior opção aos produtores.bitstream/CNPAF/25026/1/comt_117.pd
Measurement of Magnetic-Field Structures in a Laser-Wakefield Accelerator
Experimental measurements of magnetic fields generated in the cavity of a
self-injecting laser-wakefield accelerator are presented. Faraday rotation is
used to determine the existence of multi-megagauss fields, constrained to a
transverse dimension comparable to the plasma wavelength and several plasma
wavelengths longitudinally. The fields are generated rapidly and move with the
driving laser. In our experiment, the appearance of the magnetic fields is
correlated to the production of relativistic electrons, indicating that they
are inherently tied to the growth and wavebreaking of the nonlinear plasma
wave. This evolution is confirmed by numerical simulations, showing that these
measurements provide insight into the wakefield evolution with high spatial and
temporal resolution
Monoenergetic proton beams accelerated by a radiation pressure driven shock
High energy ion beams (> MeV) generated by intense laser pulses promise to be
viable alternatives to conventional ion beam sources due to their unique
properties such as high charge, low emittance, compactness and ease of beam
delivery. Typically the acceleration is due to the rapid expansion of a laser
heated solid foil, but this usually leads to ion beams with large energy
spread. Until now, control of the energy spread has only been achieved at the
expense of reduced charge and increased complexity. Radiation pressure
acceleration (RPA) provides an alternative route to producing laser-driven
monoenergetic ion beams. In this paper, we show the interaction of an intense
infrared laser with a gaseous hydrogen target can produce proton spectra of
small energy spread (~ 4%), and low background. The scaling of proton energy
with the ratio of intensity over density (I/n) indicates that the acceleration
is due to the shock generated by radiation-pressure driven hole-boring of the
critical surface. These are the first high contrast mononenergetic beams that
have been theorised from RPA, and makes them highly desirable for numerous ion
beam applications
Pregnancy rate in toggenburg goats after short, medium or long-term protocols for induction of synchronized estrus after natural mating or artificial insemination in different seasons.
Edição dos resumos da 24a Reunião Anual da Sociedade Brasileira de Tecnologia de Embriões, Porto de Galinhas, 2010
- …