781 research outputs found

    Luminous Compact Blue Galaxies up to z~1 in the HST Ultra Deep Field: I. Small galaxies, or blue centers of massive disks?

    Get PDF
    We analyze 26 Luminous Compact Blue Galaxies (LCBGs) in the HST/ACS Ultra Deep Field (UDF) at z ~ 0.2-1.3, to determine whether these are truly small galaxies, or rather bright central starbursts within existing or forming large disk galaxies. Surface brightness profiles from UDF images reach fainter than rest-frame 26.5 B mag/arcsec^2 even for compact objects at z~1. Most LCBGs show a smaller, brighter component that is likely star-forming, and an extended, roughly exponential component with colors suggesting stellar ages >~ 100 Myr to few Gyr. Scale lengths of the extended components are mostly >~ 2 kpc, >1.5-2 times smaller than those of nearby large disk galaxies like the Milky Way. Larger, very low surface brightness disks can be excluded down to faint rest-frame surface brightnesses (>~ 26 B mag/arcsec^2). However, 1 or 2 of the LCBGs are large, disk-like galaxies that meet LCBG selection criteria due to a bright central nucleus, possibly a forming bulge. These results indicate that >~ 90% of high-z LCBGs are small galaxies that will evolve into small disk galaxies, and low mass spheroidal or irregular galaxies in the local Universe, assuming passive evolution and no significant disk growth. The data do not reveal signs of disk formation around small, HII-galaxy-like LCBGs, and do not suggest a simple inside-out growth scenario for larger LCBGs with a disk-like morphology. Irregular blue emission in distant LCBGs is relatively extended, suggesting that nebular emission lines from star-forming regions sample a major fraction of an LCBG's velocity field.Comment: 11 pages, 2 figures, AASTeX; accepted for publication in Astrophysical Journal Letter

    Redshift-Distance Survey of Early-Type Galaxies. IV. Dipoles of the Velocity Field

    Get PDF
    We use the recently completed redshift-distance survey of nearby early-type galaxies (ENEAR) to measure the dipole component of the peculiar velocity field to a depth of cz ~ 6000 km/s. The sample consists of 1145 galaxies brighter than m_B=14.5 and cz < 7000 km/s, uniformly distributed over the whole sky, and 129 fainter cluster galaxies within the same volume. Most of the Dn-sigma distances were obtained from new spectroscopic and photometric observations conducted by this project, ensuring the homogeneity of the data over the whole sky. These 1274 galaxies are objectively assigned to 696 objects -- 282 groups/clusters and 414 isolated galaxies. We find that within a volume of radius ~ 6000 km/s, the best-fitting bulk flow has an amplitude of |vbulk| =220 +/- 42 km/s in the CMB restframe, pointing towards l=304 +/- 16 degrees, b=25 +/- 11 degrees. The error in the amplitude includes statistical, sampling and possible systematic errors. This solution is in excellent agreement with that obtained by the SFI Tully-Fisher survey. Our results suggest that most of the motion of the Local Group is due to fluctuations within 6000 km/s, in contrast to recent claims of large amplitude bulk motions on larger scales.Comment: 11 pages, 2 figures, ApJL, accepted (updated results; matches accepted version

    A Strong-Lens Survey in AEGIS: the influence of large scale structure

    Get PDF
    We report on the results of a visual search for galaxy-scale strong gravitational lenses over 650 arcmin^2 of HST/ACS imaging in the DEEP2-EGS field. In addition to a previously-known Einstein Cross (the "Cross," HST J141735+52264, with z_lens=0.8106 and a published z_source=3.40), we identify two new strong galaxy-galaxy lenses with multiple extended arcs. The first, HST J141820+52361 (the ``Dewdrop''; z_lens=0.5798, lenses two distinct extended sources into two pairs of arcs z_source=0.while), 9818 the second, HST J141833+52435 (the ``Anchor''; z_lens=0.4625), produces a single pair of arcs (source redshift not yet known). All three definite lenses are fit well by simple singular isothermal ellipsoid models including external shear. Using the three-dimensional line-of-sight (LOS) information on galaxies from the DEEP2 data, we calculate the convergence and shear contributions, assuming singular isothermal sphere halos truncated at 200 h^-1 kpc. These are also compared against three-dimensional local-density estimates. We find that even strong lenses in demonstrably underdense local environments may be considerably affected by LOS contributions, which in turn, may be underestimates of the effect of large scale structure.Comment: ApJ Letters, submitted. Part of the AEGIS ApJL Special Issue. 4 Figures, 1 Table. For a version with full-resolution figures, please see http://www.slac.stanford.edu/~pjm/HAGGLeS/astroph/legs.pd

    Insights from measuring pollen deposition: quantifying the pre-eminence of bees as flower visitors and effective pollinators

    Get PDF
    Using our accumulated datasets from Kenyan savanna, Mediterranean garigue, UK gardens and heathland, involving 76 plants from 30 families, we present detailed data to quantify the superiority of bees as pollinators of most flowering plants when compared with other flower visitors. Bees provided the majority of visits to study species at all sites, and 33 of the 76 plants received more than 90% of their visits from bees. Furthermore, pollen deposition onto stigmas from single-visit events (SVD, a measure of pollination effectiveness) was significantly higher for bees than non-bees at all the four sites where a major proportion of the flora was sampled. Solitary bees, and also bumblebees in temperate habitats, were the best potential pollinators for most plants in this respect, and significantly out-performed honeybees. Only a few plants were well served by bombyliid flies, and fewer again by larger hoverflies, butterflies, or solitary wasps. Bees also achieved better matches of their visit timing to peak pollen availability (measured indirectly as peak SVD), and made much shorter visits to flowers than did non-bees, permitting a substantially greater visit frequency. Additionally, they deposited significantly lower levels of potentially deleterious heterospecific pollen on stigmas in heathland and Mediterranean garigue, though not in the UK garden with densely clustered high-diversity flowering, or in the Kenyan savanna site with particularly dispersed flowering patches and some specialist non-bee flowers. Our data provide a novel and quantified characterisation of the specific advantages of bees as flower visitors, and underline the need to conserve diverse bee communities

    Absolute physical calibration in the infrared

    Get PDF
    We determine an absolute calibration for the Multiband Imaging Photometer for Spitzer 24 ÎĽm band and recommend adjustments to the published calibrations for Two Micron All Sky Survey (2MASS), Infrared Array Camera (IRAC), and IRAS photometry to put them on the same scale. We show that consistent results are obtained by basing the calibration on either an average A0V star spectral energy distribution (SED), or by using the absolutely calibrated SED of the Sun in comparison with solar-type stellar photometry (the solar analog method). After the rejection of a small number of stars with anomalous SEDs (or bad measurements), upper limits of ~1.5% root mean square (rms) are placed on the intrinsic infrared (IR) SED variations in both A-dwarf and solar-type stars. These types of stars are therefore suitable as general-purpose standard stars in the IR. We provide absolutely calibrated SEDs for a standard zero magnitude A star and for the Sun to allow extending this work to any other IR photometric system. They allow the recommended calibration to be applied from 1 to 25 ÎĽm with an accuracy of ~2%, and with even higher accuracy at specific wavelengths such as 2.2, 10.6, and 24 ÎĽm, near which there are direct measurements. However, we confirm earlier indications that Vega does not behave as a typical A0V star between the visible and the IR, making it problematic as the defining star for photometric systems. The integration of measurements of the Sun with those of solar-type stars also provides an accurate estimate of the solar SED from 1 through 30 ÎĽm, which we show agrees with theoretical models

    The DEEP2 Galaxy Redshift Survey: Discovery of Luminous, Metal-poor, Sta r-forming Galaxies at Redshifts z~0.7

    Full text link
    We have discovered a sample of 17 metal-poor, yet luminous, star-forming galaxies at redshifts z~0.7. They were selected from the initial phase of the DEEP2 survey of 3900 galaxies and the Team Keck Redshift Survey (TKRS) of 1536 galaxies as those showing the temperature-sensitive [OIII]l4363 auroral line. These rare galaxies have blue luminosities close to L*, high star formation rates of 5 to 12 solar masses per year, and oxygen abundances of 1/3 to 1/10 solar. They thus lie significantly off the luminosity-metallicity relation found previously for field galaxies with strong emission lines at redshifts z~0.7. The prior surveys relied on indirect, empirical calibrations of the R23 diagnostic and the assumption that luminous galaxies are not metal-poor. Our discovery suggests that this assumption is sometimes invalid. As a class, these newly-discovered galaxies are: (1) more metal-poor than common classes of bright emission-line galaxies at z~0.7 or at the present epoch; (2) comparable in metallicity to z~3 Lyman Break Galaxies but less luminous; and (3) comparable in metallicity to local metal-poor eXtreme Blue Compact Galaxies (XBCGs), but more luminous. Together, the three samples suggest that the most-luminous, metal-poor, compact galaxies become fainter over time.Comment: This is a .tgz file. It should create the following files: texto.tex, tab1.tex, f1.eps and f2.eps. The LaTeX style used is emulateapj.cls, version November 26, 2004. This submission is 5 pages long, one table and two figures. To appear in ApJ

    The DEEP2 Galaxy Redshift Survey: Mean Ages and Metallicities of Red Field Galaxies at z ~ 0.9 from Stacked Keck/DEIMOS Spectra

    Get PDF
    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 <= z <= 1. Comparison with models of stellar population synthesis shows that red galaxies at z ~ 0.9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. This result cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that star formation continued to at least z ~ 1.2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of Hdelta from z ~ 0.9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z ~ 0.9 to 0.1 is continually being added to by new galaxies with younger stars.Comment: A few typos were corrected and numbers in Table 1 were revise
    • …
    corecore