471 research outputs found

    Predictions of local ground geomagnetic field fluctuations during the 7-10 November 2004 events studied with solar wind driven models

    Get PDF
    The 7-10 November 2004 period contains two events for which the local ground magnetic field was severely disturbed and simultaneously, the solar wind displayed several shocks and negative <i>B<sub>z</sub></i> periods. Using empirical models the 10-min RMS and at Brorfelde (BFE, 11.67° E, 55.63° N), Denmark, are predicted. The models are recurrent neural networks with 10-min solar wind plasma and magnetic field data as inputs. The predictions show a good agreement during 7 November, up until around noon on 8 November, after which the predictions become significantly poorer. The correlations between observed and predicted log RMS is 0.77 during 7-8 November but drops to 0.38 during 9-10 November. For RMS the correlations for the two periods are 0.71 and 0.41, respectively. Studying the solar wind data for other L1-spacecraft (WIND and SOHO) it seems that the ACE data have a better agreement to the near-Earth solar wind during the first two days as compared to the last two days. Thus, the accuracy of the predictions depends on the location of the spacecraft and the solar wind flow direction. Another finding, for the events studied here, is that the and models showed a very different dependence on <i>B<sub>z</sub></i>. The model is almost independent of the solar wind magnetic field <i>B<sub>z</sub></i>, except at times when <i>B<sub>z</sub></i> is exceptionally large or when the overall activity is low. On the contrary, the model shows a strong dependence on <i>B<sub>z</sub></i> at all times

    Present day challenges in understanding the geomagnetic hazard to national power grids

    Get PDF
    Power grids and pipeline networks at all latitudes are known to be at risk from the natural hazard of geomagnetically induced currents. At a recent workshop in South Africa, UK and South African scientists and engineers discussed the current understanding of this hazard, as it affects major power systems in Europe and Africa. They also summarised, to better inform the public and industry, what can be said with some certainty about the hazard and what research is yet required to develop useful tools for geomagnetic hazard mitigation

    On the Nature of the X-ray Emission from the Ultraluminous X-ray Source, M33 X-8: New Constraints from NuSTAR and XMM-Newton

    Full text link
    We present nearly simultaneous NuSTAR and XMM-Newton observations of the nearby (832 kpc) ultraluminous X-ray source (ULX) M33 X-8. M33 X-8 has a 0.3-10 keV luminosity of LX ~ 1.4 x 10^39 erg/s, near the boundary of the "ultraluminous" classification, making it an important source for understanding the link between typical Galactic X-ray binaries and ULXs. Past studies have shown that the 0.3-10 keV spectrum of X-8 can be characterized using an advection-dominated accretion disk model. We find that when fitting to our NuSTAR and XMM-Newton observations, an additional high-energy (>10 keV) Comptonization component is required, which allows us to rule out single advection-dominated disk and classical sub-Eddington models. With our new constraints, we analyze XMM-Newton data taken over the last 17 years to show that small (~30%) variations in the 0.3-10 keV flux of M33 X-8 result in spectral changes similar to those observed for other ULXs. The two most likely phenomenological scenarios suggested by the data are degenerate in terms of constraining the nature of the accreting compact object (i.e., black hole versus neutron star). We further present a search for pulsations using our suite of data; however, no clear pulsations are detected. Future observations designed to observe M33 X-8 at different flux levels across the full 0.3-30 keV range would significantly improve our constraints on the nature of this important source.Comment: Accepted for publication in ApJ (15 pages, 4 tables, 6 figures

    The Impact of Galaxy Cluster Mergers on Cosmological Parameter Estimation from Surveys of the Sunyaev-Zel'dovich Effect

    Full text link
    Sensitive surveys of the Cosmic Microwave Background will detect thousands of galaxy clusters via the Sunyaev-Zel'dovich (SZ) effect. Two SZ observables, the central or maximum and integrated Comptonization parameters y_max and Y, relate in a simple way to the total cluster mass, which allow the construction of mass functions (MFs) that can be used to estimate cosmological parameters such as Omega_M, sigma_8, and the dark energy parameter w. However, clusters form from the mergers of smaller structures, events that can disrupt the equilibrium of intracluster gas upon which SZ-M relations rely. From a set of N-body/hydrodynamical simulations of binary cluster mergers, we calculate the evolution of Y and y_max over the course of merger events and find that both parameters are transiently "boosted," primarily during the first core passage. We then use a semi-analytic technique developed by Randall et al. (2002) to estimate the effect of merger boosts on the distribution functions YF and yF of Y and y_max, respectively, via cluster merger histories determined from extended Press-Schechter (PS) merger trees. We find that boosts do not induce an overall systematic effect on YFs, and the values of Omega_M, sigma_8, and w were returned to within 2% of values expected from the nonboosted YFs. The boosted yFs are significantly biased, however, causing Omega_M to be underestimated by 15-45%, sigma_8 to be overestimated by 10-25%, and w to be pushed to more negative values by 25-45%. We confirm that the integrated SZ effect, Y, is far more robust to mergers than y_max, as previously reported by Motl et al. (2005) and similarly found for the X-ray equivalent Y_X, and we conclude that Y is the superior choice for constraining cosmological parameters.Comment: 16 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    NuSTAR study of Hard X-Ray Morphology and Spectroscopy of PWN G21.5-0.9

    Get PDF
    We present NuSTAR high energy X-ray observations of the pulsar wind nebula (PWN)/supernova remnant G21.5-0.9. We detect integrated emission from the nebula up to ~40 keV, and resolve individual spatial features over a broad X-ray band for the first time. The morphology seen by NuSTAR agrees well with that seen by XMM-Newton and Chandra below 10 keV. At high energies NuSTAR clearly detects non-thermal emission up to ~20 keV that extends along the eastern and northern rim of the supernova shell. The broadband images clearly demonstrate that X-ray emission from the North Spur and Eastern Limb results predominantly from non-thermal processes. We detect a break in the spatially integrated X-ray spectrum at ~9 keV that cannot be reproduced by current SED models, implying either a more complex electron injection spectrum or an additional process such as diffusion compared to what has been considered in previous work. We use spatially resolved maps to derive an energy-dependent cooling length scale, L(E)∝EmL(E) \propto E^{m} with m=−0.21±0.01m = -0.21 \pm 0.01. We find this to be inconsistent with the model for the morphological evolution with energy described by Kennel & Coroniti (1984). This value, along with the observed steepening in power-law index between radio and X-ray, can be quantitatively explained as an energy-loss spectral break in the simple scaling model of Reynolds (2009), assuming particle advection dominates over diffusion. This interpretation requires a substantial departure from spherical magnetohydrodynamic (MHD), magnetic-flux-conserving outflow, most plausibly in the form of turbulent magnetic-field amplification.Comment: 13 pages, 8 figures, 1 table, Accepted for publication in the Astrophysical Journa

    Astro 2020 Science White Paper: Time Domain Studies of Neutron Star and Black Hole Populations: X-ray Identification of Compact Object Types

    Get PDF
    What are the most important conditions and processes governing the growth of stellar-origin compact objects? The identification of compact object type as either black hole (BH) or neutron star (NS) is fundamental to understanding their formation and evolution. To date, time-domain determination of compact object type remains a relatively untapped tool. Measurement of orbital periods, pulsations, and bursts will lead to a revolution in the study of the demographics of NS and BH populations, linking source phenomena to accretion and galaxy parameters (e.g., star formation, metallicity). To perform these measurements over sufficient parameter space, a combination of a wide-field (>5000 deg^2) transient X-ray monitor over a dynamic energy range (~1-100 keV) and an X-ray telescope for deep surveys with <5 arcsec PSF half-energy width (HEW) angular resolution are required. Synergy with multiwavelength data for characterizing the underlying stellar population will transform our understanding of the time domain properties of transient sources, helping to explain details of supernova explosions and gravitational wave event rates.Comment: 9 pages, 2 figures. Submitted to the Astro2020 Decadal Surve

    Hard X-ray emitting Active Galactic Nuclei selected by the Chandra Multi-wavelength Project

    Full text link
    We present X-ray and optical analysis of 188 AGN identified from 497 hard X-ray (f (2.0-8.0 keV) > 2.7x10^-15 erg cm^-2 s^-1) sources in 20 Chandra fields (1.5 deg^2) forming part of the Chandra Multi-wavelength Project. These medium depth X-ray observations enable us to detect a representative subset of those sources responsible for the bulk of the 2-8 keV Cosmic X-ray Background. Brighter than our optical spectroscopic limit, we achieve a reasonable degree of completeness (77% of X-ray sources with counter-parts r'< 22.5 have been classified): broad emission line AGN (62%), narrow emission line galaxies (24%), absorption line galaxies (7%), stars (5%) or clusters (2%). We find that most X-ray unabsorbed AGN (NH<10^22 cm^-2) have optical properties characterized by broad emission lines and blue colors, similiar to optically-selected quasars from the Sloan Digital Sky Survey but with a slighly broader color distribution. However, we also find a significant population of redder (g'-i'>1.0) AGN with broad optical emission lines. Most of the X-ray absorbed AGN (10^22<NH<10^24 cm^-2) are associated with narrow emission line galaxies, with red optical colors characteristically dominated by luminous, early type galaxy hosts rather than from dust reddening of an AGN. We also find a number of atypical AGN; for instance, several luminous AGN show both strong X-ray absorption (NH>10^22 cm^-2) and broad emission lines. Overall, we find that 81% of X-ray selected AGN can be easily interpreted in the context of current AGN unification models. Most of the deviations seem to be due to an optical contribution from the host galaxies of the low luminosity AGN.Comment: 26 pages; 13 figures (7 color); accepted for publication in the Astrophysical Journa

    Locating the most energetic electrons in Cassiopeia A

    Get PDF
    We present deep (>>2.4 Ms) observations of the Cassiopeia A supernova remnant with {\it NuSTAR}, which operates in the 3--79 keV bandpass and is the first instrument capable of spatially resolving the remnant above 15 keV. We find that the emission is not entirely dominated by the forward shock nor by a smooth "bright ring" at the reverse shock. Instead we find that the >>15 keV emission is dominated by knots near the center of the remnant and dimmer filaments near the remnant's outer rim. These regions are fit with unbroken power-laws in the 15--50 keV bandpass, though the central knots have a steeper (Γ∌−3.35\Gamma \sim -3.35) spectrum than the outer filaments (Γ∌−3.06\Gamma \sim -3.06). We argue this difference implies that the central knots are located in the 3-D interior of the remnant rather than at the outer rim of the remnant and seen in the center due to projection effects. The morphology of >>15 keV emission does not follow that of the radio emission nor that of the low energy (<<12 keV) X-rays, leaving the origin of the >>15 keV emission as an open mystery. Even at the forward shock front we find less steepening of the spectrum than expected from an exponentially cut off electron distribution with a single cutoff energy. Finally, we find that the GeV emission is not associated with the bright features in the {\it NuSTAR} band while the TeV emission may be, suggesting that both hadronic and leptonic emission mechanisms may be at work.Comment: 12 pages, 11 figures, accepted for publication in Ap

    Ephemerality of discrete methane vents in lake sediments

    Get PDF
    Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high-flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high-resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high-flux periods) or days (for low-flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long-term, lake-wide ebullition dynamics may be modeled without resolving the fine-scale spatial structure of venting.National Science Foundation (U.S.) (1045193)United States. Department of Energy (DE-FE001399
    • 

    corecore