826 research outputs found

    The LISA PathFinder DMU and Radiation Monitor

    Get PDF
    The LISA PathFinder DMU (Data Management Unit) flight model was formally accepted by ESA and ASD on 11 February 2010, after all hardware and software tests had been successfully completed. The diagnostics items are scheduled to be delivered by the end of 2010. In this paper we review the requirements and performance of this instrumentation, specially focusing on the Radiation Monitor and the DMU, as well as the status of their programmed use during mission operations, on which work is ongoing at the time of writing.Comment: 11 pages, 7 figures, prepared for the Proceedings of the 8th International LISA Symposium, Classical and Quantum Gravit

    The Labour Government, the Treasury and the £6 pay policy of July 1975

    Get PDF
    The 1974-79 Labour Government was elected in a climate of opinion that was fiercely opposed to government intervention in the wage determination process, and was committed to the principles of free collective bargaining in its manifestoes. However, by December 1974 the Treasury was advocating a formal incomes policy, and by July 1975 the government had introduced a £6 flat rate pay norm. With reference to archival sources, the paper demonstrates that TUC and Labour Party opposition to incomes policy was reconciled with the Treasury's advocacy by limiting the Bank of England‟s intervention in the foreign exchange market when sterling came under pressure. This both helped to achieve the Treasury's objective of improving the competitiveness of British industry, and acted as a catalyst for the introduction of incomes policy because the slide could be attributed to a lack of market confidence in British counter-inflation policy

    Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations

    Get PDF
    We investigate the behavior of the slip length in Newtonian liquids subject to planar shear bounded by substrates with mixed boundary conditions. The upper wall, consisting of a homogenous surface of finite or vanishing slip, moves at a constant speed parallel to a lower stationary wall, whose surface is patterned with an array of stripes representing alternating regions of no-shear and finite or no-slip. Velocity fields and effective slip lengths are computed both from molecular dynamics (MD) simulations and solution of the Stokes equation for flow configurations either parallel or perpendicular to the stripes. Excellent agreement between the hydrodynamic and MD results is obtained when the normalized width of the slip regions, a/σ≳O(10)a/\sigma \gtrsim {\cal O}(10), where σ\sigma is the (fluid) molecular diameter characterizing the Lennard-Jones interaction. In this regime, the effective slip length increases monotonically with a/σa/\sigma to a saturation value. For a/σ≲O(10)a/\sigma \lesssim {\cal O}(10) and transverse flow configurations, the non-uniform interaction potential at the lower wall constitutes a rough surface whose molecular scale corrugations strongly reduce the effective slip length below the hydrodynamic results. The translational symmetry for longitudinal flow eliminates the influence of molecular scale roughness; however, the reduced molecular ordering above the wetting regions of finite slip for small values of a/σa/\sigma increases the value of the effective slip length far above the hydrodynamic predictions. The strong inverse correlation between the effective slip length and the liquid structure factor representative of the first fluid layer near the patterned wall illustrates the influence of molecular ordering effects on slip in non-inertial flows.Comment: 12 pages, 10 figures Web reference added for animations: http://www.egr.msu.edu/~priezjev/bubble/bubble.htm

    Limits of 'patient-centredness'; valuing contextually specific communication patterns

    Get PDF
    Context Globally, doctor–patient communication is becoming synonymous with high-quality health care in the 21st century. However, what is meant by ‘good communication’ and whether there is consensus internationally remain unclear. Objectives Here, we characterise understandings of ‘good communication’ in future doctors from medical schools in three contextually contrasting continents. Given locally specific socio-cultural influences, we hypothesised that there would be a lack of global consensus on what constitutes ‘good communication’. Methods A standardised two-phase methodology was applied in turn to each of three medical schools in the UK, Egypt and India (n = 107 subjects), respectively, in which students were asked: ‘What is good communication?’ Phase I involved exploratory focus groups to define preliminary themes (mean number of participants per site: 17). Phase II involved thematic confirmation and expansion in one-to-one semi-structured interviews (mean number of participants per site: 18; mean hours of dialogue captured per site: 55). Findings were triangulated and analysed using grounded theory. Results The overarching theme that emerged from medical students was that ‘good communication’ requires adherence to certain ‘rules of communication’. A shared rule that doctors must communicate effectively despite perceived disempowerment emerged across all sites. However, contradictory culturally specific rules about communication were identified in relation to three major domains: family; gender, and emotional expression. Egyptian students perceived emotional aspects of Western doctors’ communication strikingly negatively, viewing these doctors as problematically cold and unresponsive. Conclusions Contradictory perceptions of ‘good communication’ in future doctors are found cross-continentally and may contribute to prevalent cultural misunderstandings in medicine. The lack of global consensus on what defines good communication challenges prescriptively taught Western ‘patient-centredness’ and questions assumptions about international transferability. Health care professionals must be educated openly about flexible, context-specific communication patterns so that they can avoid cultural incompetence and tailor behaviours in ways that optimise therapeutic outcomes wherever they work around the globe

    LISA and LISA PathFinder, the endeavour to detect low frequency GWs

    Full text link
    This is a review about LISA and its technology demonstrator, LISA PathFinder. We first describe the conceptual problems which need to be overcome in order to set up a working interferometric detector of low frequency Gravitational Waves (GW), then summarise the solutions to them as currently conceived by the LISA mission team. This will show that some of these solutions require new technological abilities which are still under development, and which need proper test before being fully implemented. LISA PathFinder (LPF) is the the testbed for such technologies. The final part of the paper will address the ideas and concepts behind the PathFinder as well as their impact on LISA.Comment: 25 pages, 21 figures, presented at the Spanish Relativity Meeting, Mallorca September 2006. Will be published in Journal of Physics: Conference Series, IOP. To be published in Journal of Physics: Conference Series, IO

    Optimisation of epoxy blends for use in extrinsic self-healing fibre-reinforced composites

    Get PDF
    AbstractA range of epoxy blends were investigated to determine their mechanical properties and suitability for use as healing agents for the repair of fibre-reinforced polymer (FRP) composites. Key requirements for an effective healing agent are low viscosity, and good mechanical performance. A base epoxy resin was selected and blended with a variety of diluents and a toughening agent, and the physical and mechanical properties of the resulting polymers were investigated. Single lap shear strengths of up to 139% of the base epoxy values were demonstrated, while double cantilever beam testing showed specimens healed with optimised epoxy blends can provide recoveries in fracture toughness of up to 269%, compared to 56% in specimens healed with the base epoxy resin. Cross-ply FRP laminate tensile specimens were used to highlight the potential to recover stiffness decay caused by intraply cracking. Following infusion of the damage via embedded vascules, the toughened epoxies were capable of providing complete recovery of stiffness

    Detailed Calculation of Test-Mass Charging in the LISA Mission

    Full text link
    The electrostatic charging of the LISA test masses due to exposure of the spacecraft to energetic particles in the space environment has implications in the design and operation of the gravitational inertial sensors and can affect the quality of the science data. Robust predictions of charging rates and associated stochastic fluctuations are therefore required for the exposure scenarios expected throughout the mission. We report on detailed charging simulations with the Geant4 toolkit, using comprehensive geometry and physics models, for Galactic cosmic-ray protons and helium nuclei. These predict positive charging rates of 50 +e/s (elementary charges per second) for solar minimum conditions, decreasing by half at solar maximum, and current fluctuations of up to 30 +e/s/Hz^{1/2}. Charging from sporadic solar events involving energetic protons was also investigated. Using an event-size distribution model, we conclude that their impact on the LISA science data is manageable. Several physical processes hitherto unexplored as potential charging mechanisms have also been assessed. Significantly, the kinetic emission of very low-energy secondary electrons due to bombardment of the inertial sensors by primary cosmic rays and their secondaries can produce charging currents comparable with the Monte Carlo rates.Comment: 31 pages, 18 figures, 4 tables. to be published in Astroparticle Physics. Changed due to error found in normalisation of the simulation result
    • …
    corecore