7,751 research outputs found

    The Impact of Placing Adolescent Males into Foster Care on their Education, Income Assistance and Incarcerations

    Get PDF
    Understanding the causal impacts of taking youth on the margins of risk into foster care is an element of the evidence-base on which policy development for this crucial function of government relies. Yet, there is little research looking at these causal impacts; neither is there much empirical work looking at long-term outcomes. This paper focuses on estimating the impact of placing 16 to 18 year old male youth into care on their rates of high school graduation, and post-majority income assistance receipt and incarceration. Two distinct sources of exogenous variation are used to generate instrumental variables, the estimates from which are interpreted in a heterogeneous treatment effects framework as local average treatment effects (LATEs). And, indeed, each source of exogenous variation is observed to estimate different parameters. While both instruments are in accord in that placement in foster care reduces (or delays) high school graduation, the impact of taking youth into care on income assistance use has dramatically different magnitudes across the two margins explored, and, perhaps surprisingly, one source of exogenous variation causes an increase, and the other a decrease, in the likelihood of the youth being incarcerated by age 20. Our results suggest that it is not enough to ask whether more or fewer children should be taken into care; rather, which children are, and how they are, taken into care matter for long-term outcomes.foster care, local average treatment effects

    Particle on the Innermost Stable Circular Orbit of a Rapidly Spinning Black Hole

    Get PDF
    We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly spinning black hole both (a) analytically, working to leading order in the deviation from extremality and (b) numerically, with a new high-precision Teukolsky code. We find excellent agreement between the two methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field theory calculations performed in the context of the Kerr/CFT correspondence.Comment: 15 pages, 4 figures, v2: reference added, minor changes, matches published versio

    Quantum and Classical in Adiabatic Computation

    Get PDF
    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialised state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose groundstate encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimisation algorithms and quantum adiabatic optimisation. This new perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing - though inconclusive - results

    Breaking the cycle? The effect of education on welfare receipt among children of welfare recipients

    Get PDF
    We examine the impact of high school graduation on the probability individuals from welfare backgrounds use welfare themselves. Our data consists of administrative educational records for grade 12 students in a Canadian province linked with their own and their parents' welfare records. We address potential endogeneity problems by: 1) controlling for ability using past test scores; 2) using an instrument for graduation based on school principal fixed effects; and 3) using a Heckman- Singer type unobserved heterogeneity estimator. Graduation would reduce welfare receipt of dropoutsby Ý to 3/4. Effects are larger for individuals from troubled family backgrounds and low income neighbourhoods.

    Thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions and hysteresis

    Get PDF
    A crossover at a temperature T* in the temperature dependence of the width s of the distribution of switching currents of moderately damped Josephson junctions has been reported in a number of recent publications, with positive ds/dT and IV characteristics associated with underdamped behaviour for lower temperatures T<T*, and negative ds/dT and IV characteristics resembling overdamped behaviour for higher temperatures T>T*. We have investigated in detail the behaviour of Josephson junctions around the temperature T* by using Monte Carlo simulations including retrapping from the running state into the supercurrent state as given by the model of Ben-Jacob et al. We develop discussion of the important role of multiple escape and retrapping events in the moderate-damping regime, in particular considering the behaviour in the region close to T*. We show that the behaviour is more fully understood by considering two crossover temperatures, and that the shape of the distribution and s(T) around T*, as well as at lower T<T*, are largely determined by the shape of the conventional thermally activated switching distribution. We show that the characteristic temperatures T* are not unique for a particular Josephson junction, but have some dependence on the ramp rate of the applied bias current. We also consider hysteresis in moderately damped Josephson junctions and discuss the less commonly measured distribution of return currents for a decreasing current ramp. We find that some hysteresis should be expected to persist above T* and we highlight the importance, even well below T*, of accounting properly for thermal fluctuations when determining the damping parameter Q.Comment: Accepted for publication in PR

    Welfare and ethical issues in invasive species management

    Get PDF
    Cowan, P., Warburton, B., Fisher, P

    A low-loss, broadband antenna for efficient photon collection from a coherent spin in diamond

    Get PDF
    We report the creation of a low-loss, broadband optical antenna giving highly directed output from a coherent single spin in the solid-state. The device, the first solid-state realization of a dielectric antenna, is engineered for individual nitrogen vacancy (NV) electronic spins in diamond. We demonstrate a directionality close to 10. The photonic structure preserves the high spin coherence of single crystal diamond (T2>100us). The single photon count rate approaches a MHz facilitating efficient spin readout. We thus demonstrate a key enabling technology for quantum applications such as high-sensitivity magnetometry and long-distance spin entanglement.Comment: 5 pages, 4 figures and supplementary information (5 pages, 8 figures). Comments welcome. Further information under http://www.quantum-sensing.physik.unibas.c

    Power-law carrier dynamics in semiconductor nanocrystals at nanosecond time scales

    Full text link
    We report the observation of power law dynamics on nanosecond to microsecond time scales in the fluorescence decay from semiconductor nanocrystals, and draw a comparison between this behavior and power-law fluorescence blinking from single nanocrystals. The link is supported by comparison of blinking and lifetime data measured simultaneously from the same nanocrystal. Our results reveal that the power law coefficient changes little over the nine decades in time from 10 ns to 10 s, in contrast with the predictions of some diffusion based models of power law behavior.Comment: 3 pages, 2 figures, compressed for submission to Applied Physics Letter
    • 

    corecore