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We compute the radiation emitted by a particle on the innermost stable circular orbit of a rapidly
spinning black hole both (a) analytically, working to leading order in the deviation from extremality and
(b) numerically, with a new high-precision Teukolsky code. We find excellent agreement between the two
methods. We confirm previous estimates of the overall scaling of the power radiated, but show that there
are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode
structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each
mode is controlled by its conformal weight, a quantity that arises naturally in the representation theory of
the enhanced near-horizon symmetry group. We find relationships to previous work on particles orbiting in
precisely extreme Kerr, including detailed agreement of quantities computed here with conformal field
theory (CFT) calculations performed in the context of the Kerr/CFT correspondence.
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I. INTRODUCTION

Unlike its simple Newtonian counterpart, the general
relativistic two-body problem is a sprawling collection
of different regimes, each with its own special techniques,
where it becomes possible to precisely define and solve the
problem. In recent years this two-body landscape has
been explored in impressive detail, driven primarily by
the need for accurate theoretical models of gravitational-
wave sources. Well-separated masses are treated with high-
order post-Newtonian expansions, large mass-ratio cases
are treated with point particle perturbation theory, and
close orbits of comparable mass systems are handled with
numerical simulations. Nontrivial checks in overlapping
domains of validity [1] give confidence that these diverse
efforts are converging towards what could be called a
complete solution of the relativistic two-body problem.
One corner just beginning to be filled in [2–4] is that

of a particle orbiting in the near-horizon region of a near-
extreme Kerr black hole. From a theoretical perspective,
this is one of the most interesting regimes since it enjoys an
enhanced isometry group as well as an infinite-dimensional
asymptotic symmetry group [5,6]. For practical purposes,
calculations at extremes of parameter space can provide
useful calibration points for approximation schemes, such
as the effective one-body formalism [7], aiming to be
uniform over parameter space. Finally, thought experiments
showing naive violation of the cosmic censorship conjec-
ture by throwing particles into a near-extreme black hole
[8,9] provide additional motivation to study near-horizon,
near-extreme orbits.

In this paper we compute the radiation from a particle
on the innermost stable circular orbit (ISCO) of a rapidly
spinning Kerr black hole. This radiation plays an important
role in the transition from inspiral to plunge [10,11] and
also informs studies of the validity of the cosmic censorship
conjecture [12–14]. Previous work [11,14,15] has esti-
mated the scaling near extremality to be p ¼ 2=3, where
the total energy radiated per unit time is expressed as

_E ¼ Cϵp; ϵ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=M2

q
; ð1Þ

with M and Ma the mass and spin of the black hole.
Our calculations confirm p ¼ 2=3 but also reveal some

interesting details. First, the coefficient C is not a constant,
and instead exhibits oscillations in ϵ about its mean value.
Second, there is an intricate structure in the l; m angular
modes of the radiation. While all modes have p ¼ 2=3 for
the flux down the horizon, the same is not true for the flux
at infinity. Instead, the exponent for the power at infinity is
given by

p∞ ¼ 4

3
Re½h�; ð2Þ

where h is the conformal weight of the mode, given in terms
of the angular eigenvalues fK;mg (spheroidal and azimu-
thal) by

h≡ 1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − 2m2 þ 1

4

r
: ð3Þ
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The notion of a conformal weight arises in the repre-
sentation theory of the near-horizon symmetry group
(Appendix A 4) and is a key entry in the Kerr/CFT
dictionary. The weight h should be thought of as funda-
mental, with the formula (3) depending on conventional
choices like the definition of K. The appearance of the
conformal weight in the radiation at infinity can be
interpreted as a far-field signature of the near-field sym-
metry enhancement.
The conformal weight controls the character of each

mode. Modes with complex weight (K − 2m2 þ 1=4 < 0)
have Re½h� ¼ 1=2 and hence the dominant scaling p ¼
2=3, while modes with real weight (K − 2m2 þ 1=4 > 0)
have Re½h� > 1=2 and hence subdominant scaling
p > 2=3.1 Only the dominant modes display the oscilla-
tions in the prefactor C. At each l, modes with higher
values of jmj are dominant (Fig. 1). The transition is
increasingly sharp as extremality is approached, and (e.g.)
already at ϵ ¼ 0.1 (a ¼ 0.995M), the 2-2 mode dominates
the 2-1 mode by 4 orders of magnitude (Fig. 3). An
observation of a huge difference in power between the 2-2
and 2-1 modes would signal the presence of a near-extreme
black hole.2

We compute the radiation both analytically (to leading
order in ϵ) and numerically (at small, finite ϵ). Comparing
the results, we begin seeing agreement (to about 10%) at
ϵ ¼ 0.01 (a ¼ 0.99995M) and we achieve eight digits
of accuracy by the time we reach ϵ ¼ 10−13, the smallest
value we simulate. Historically, the near-extremal region

of parameter space has been difficult to access
numerically. Our new codes mark a substantial improve-
ment over previous work and can accurately calculate
the radiated fluxes for spins as high as a ¼
0.999999999999999999999999995M.
Our analytic solution of the Teukolsky equation uses the

method of matched asymptotic expansions, a technique
used in [18–20] and many times since. Our consideration of
a particle on the ISCO complicates matters because this
orbit is in a sense intermediate between the near-horizon
and far regions (Fig. 2). The proper way to think of the
extremal ISCO has been the subject of some discussion
over the years, and our calculations afford an opportunity to
chime in. The fate of the ISCO is discussed in Sec. II and in
the Appendix.
Previous work involving one of us [2] considered the

physically distinct problem of a particle on a circular orbit
in the near-horizon region of an exactly extremal Kerr black
hole, working to leading order in the deviation from the
horizon. After performing the calculation in the case of a
scalar charge in this paper, we find that the power radiated
is identical to that of [2] with parameters identified in the
natural way. The agreement is not completely surprising
since the geometry in the vicinity of the near-extremal
ISCO is the same as the near-horizon geometry of exactly
extremal Kerr (the “NHEK” geometry, Appendix A 3). On
the other hand, the agreement is highly nontrivial since the
near-extremal Kerr throat contains an entire near-horizon

FIG. 1 (color online). Diagram indicating the scaling (1) of
energy radiated to infinity for each mode. Blue dots indicate the
dominant scaling p ¼ 2=3 in the gravitational case, while red
stars indicate the dominant scaling p ¼ 2=3 in the scalar case.
Yellow dots indicate subdominant scaling p > 2=3. The flux
down the horizon always has dominant scaling p ¼ 2=3.

FIG. 2. The well-known diagram of [21] overlaid with corre-
sponding regions of the dimensionless coordinate x that we
consider. The dashed lines illustrate the BL radii of the ISCO rms,
the marginally bound orbit rmb, and the photon orbit rph. Also
shown are the horizon rþ and a constant (ϵ-independent) BL
radius r0. (Note that we use the notation x0 for the ISCO radius in
the main body.) The “cracks” in the throat illustrate infinite
proper radial distance on a BL slice in the extremal limit. They
can also be interpreted as signaling the presence of three
physically distinct extremal limits (see the Appendix).

1An analogous mode structure was previously observed in the
study of near-extremal quasinormal modes [16,17].

2A detector at a fixed position cannot probe angular depend-
ence, but for a circular orbit the difference between m ¼ 1 and
m ¼ 2 is visible in the associated time-dependence eimΩt.
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region with a curved geometry, which is absent in extremal
Kerr. (This region is the bottom section of Fig. 2 and is
described by the “near-NHEK” metric, Appendix A 4.)
One can expect the analogous agreement to hold in the

gravitational case. We therefore do not repeat the detailed
calculation of the scalar case but instead rely on the
gravitational results of [2].3 Identifying the two problems
in the same manner as before produces analytic expressions
for the power radiated by a particle on the ISCO. We
confirm these expressions numerically. We have not iden-
tified the precise reason for the agreement (in this particular
observable) between the two different problems, but we
think it is a manifestation of the action of the infinite-
dimensional conformal group, which can relate extremal to
near-extremal physics [3,4].
In Sec. II we give an overview of near-extremal physics

and establish notation. In Sec. III we perform the analytic
calculation in the scalar case. In Sec. IV we present analytic
results for the gravitational case. In Sec. V we present the
new numerical codes and compare the results with the
analytic expressions. An Appendix reviews near-horizon
limits, placing our computation in the context of this rich
structure. Our metric has signature −þþþ and we use
units with G ¼ c ¼ 1.

II. NEAR-EXTREMAL PHYSICS

The nonextremal Kerr black hole is invariantly charac-
terized by two parameters a and M satisfying M > 0
and a < M. We will work with M > 0 and ϵ > 0, where
ϵ is the near-extremality parameter defined in Eq. (1).
It is also useful to introduce r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
, the

Boyer-Lindquist (BL) coordinate radii of the horizons, and
the (outer) horizon angular frequency ΩH ¼ a=ðr2þ þ a2Þ.
We restrict attention to r > rþ, which we call the Kerr
exterior.
One may now ask the question: “What is the extremal

(ϵ → 0) limit of the Kerr exterior?” Fixing Boyer-Lindquist
(BL) coordinates, one obtains the spacetime conven-
tionally called extreme Kerr. On the other hand, fixing
alternative coordinates adapted to the near-horizon region
(Appendix A 2) gives a different spacetime, normally called
NHEK (for near-horizon extremal Kerr). There is yet a third
limit adapted to the ISCO,which gives a different patch of the
maximally extended NHEK spacetime (Appendix A 3). The
first limit leaves asymptotic infinity intact but replaces the
nondegenerate horizon by a degenerate one. The second and
third limits replace asymptotic null infinity with a timelike
boundary. The answer to the question is thus “not enough
information.” There are multiple limits and none is preferred
on any fundamental grounds.

The existence of the various limits is a signal that near-
extremal physics falls into the class of what are generally
called singular perturbation problems. In our ISCO cal-
culation, the singular nature appears as the impossibility of
imposing all the boundary conditions of the differential
equation in a single small-ϵ approximation. Instead we
must make a far-zone approximation where we can satisfy
the far boundary conditions (no incoming radiation from
past null infinity), a near-zone approximation where we can
satisfy the near boundary conditions (no incoming radiation
from the past horizon), and match the two in their region of
overlap.

A. Circular orbits and the ISCO

We consider a nonextremal (ϵ > 0) Kerr black hole and
work with the dimensionless radial coordinate x defined by

x ¼ r − rþ
rþ

; ð4Þ

which places the event horizon at x ¼ 0. The exterior of a
nonextremal black hole has three important circular equa-
torial geodesics picked out by geometric considerations
[21]: the ISCO (the marginally stable orbit), the innermost
bound circular orbit (the marginally bound orbit) and the
photon orbit or light ring. As noted by [21], the (BL or x)
coordinate radii of these orbits approach that of the horizon
as ϵ → 0. The marginally bound and photon orbits go like
x ∼ ϵ, while the ISCO approaches more slowly, being given
to leading order in ϵ by

x0 ¼ 21=3ϵ2=3: ð5Þ

Figure 2 illustrates the properties of these orbits, and a
formal discussion of their ϵ → 0 limits is given in the
Appendix. While our focus is on the ISCO, our analysis
holds for any orbit going like x0 ∼ ϵk with 0 < k < 1.
Except where explicitly noted, all later formulas in this
paper hold for such orbits.
Two other useful properties of a circular orbit are its

angular velocity Ω and “redshift factor” g ¼ e −Ωl (where
e and l are the particle’s conserved energy and angular
momentum per unit rest mass). To leading order we have

Ω −ΩH

ΩH
¼ −

3

4
x0; g ¼

ffiffiffi
3

p

4
x0: ð6Þ

The physical significance of g is that a photon emitted by
the particle with energy E is observed on the symmetry axis
at infinity to have energy gE. This thought experiment
illustrates how signals from the near-horizon region are
redshifted away; in the case of the ISCO the observed
energy vanishes as x0 ∼ ϵ2=3 as extremality is reached. This
is the same scaling as the radiation from the particle orbit,
our focus in this paper.

3Only the flux at infinity was presented in [2]. We compute the
horizon flux using expressions given therein.
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Note that as ϵ → 0 the horizon angular velocity and BL
horizon radii go as

ΩH ¼ 1

2M
ð1 − ϵÞ: ð7Þ

r� ¼ Mð1� ϵÞ: ð8Þ

Since ΩH → 1=ð2MÞ like ϵ, one may replace ΩH with
1=ð2MÞ in Eq. (6).

III. SCALAR CALCULATION

We first define the problem at finite ϵ > 0. We consider
the scalar wave equation,

gab∇a∇bΦ ¼ −4πT; ð9Þ

with source

T ¼ qg
r20

δðr − r0Þδðθ − π=2Þδðϕ −ΩtÞ: ð10Þ

Here q is a constant called the scalar charge, g is the redshift
factor (6), r0 is the BL coordinate radius of the ISCO, andΩ
is its angular velocity. The source has a mode expansion,

T ¼ qg
r20

X
l;m

δðr − r0ÞSlmðπ=2ÞSlmðθÞeimðϕ−ΩtÞ; ð11Þ

where l ranges from 0 to ∞ and m ranges from −l to l.
Only these modes will be excited in the field, which we
similarly decompose as

Φ ¼
X
l;m

Φlm ¼
X
l;m

RlmðrÞSlmðθÞeimðϕ−ΩtÞ: ð12Þ

The Slm satisfy the spheroidal harmonic differential
equation,

�∂θðsin θ∂θÞ
sin θ

þ Klm −
m2

sin2θ
− a2m2Ω2sin2θ

�
Slm ¼ 0:

ð13Þ

Solutions regular at the poles are labeled by l and m
with an associated eigenvalue Klm. We normalize them so
that

R
sin θdθS2 ¼ 1.

In terms of the dimensionless coordinate x (4), the radial
functions satisfy

xðxþ σÞR00ðxÞ þ ð2xþ σÞR0ðxÞ þ VRðxÞ

¼ −2qg
rþ

Slmðπ=2Þδðx − x0Þ; ð14Þ

with

V ¼ ðrþmΩxðxþ 2Þ þ nσ=2Þ2
xðxþ σÞ þ 2am2Ω − K; ð15Þ

where we have introduced

σ ¼ rþ − r−
rþ

; n ¼ 4mM
Ω − ΩH

σ
: ð16Þ

We have dropped the mode labels l andm. Equation (14) is
also the spin-zero Teukolsky equation [22] with angular
frequency ω ¼ mΩ.
For the nonradiative m ¼ 0 modes, Eq. (14) can be

solved exactly for any value of spin [23]. We focus on the
radiative case, and for the remainder of the paper we
assume m ≠ 0. In this case, the solutions to (14) have
asymptotic behaviors given by

RðxÞ → C∞eimΩrþxx−1þimΩrþσ=ϵ

þD∞e−imΩrþxx−1−imΩrþσ=ϵ; x → ∞ ð17Þ

RðxÞ → CHx−inrþσ=ð4MϵÞ

þDHxinrþσ=ð4MϵÞ; x → 0; ð18Þ

where C∞, D∞, CH, and DH are (complex) constants. We
impose no incoming radiation from the past horizon or past
null infinity,

D∞ ¼ DH ¼ 0: ð19Þ

From the properties of the differential equation (14), it is
clear that this uniquely fixes the solution. The observables
we are interested in are the power radiated to infinity and
down the event horizon. These are given for each mode by

_E∞ ¼ 1

2
r2þm2Ω2jC∞j2 ð20Þ

_EH ¼ Mrþm2ΩðΩ −ΩHÞjCHj2: ð21Þ

This defines the problem for every ϵ > 0.
The need for a matched expansion to study the ϵ → 0

limit can be seen at the level of the differential equation.
Naively setting ϵ ¼ 0 in (14) and solving, one finds that
the solutions go as xh−1 and x−h near x ¼ 0, rather than the
oscillatory behavior (18) of the finite-ϵ equation. Thus the
ϵ ¼ 0 equation cannot satisfy the boundary conditions of
the problem, the hallmark of a singular perturbation
problem.

A. Near-extremal simplification

We first make some simplifications using ϵ ≪ 1. The
angular equation (13) becomes
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�∂θðsin θ∂θÞ
sin θ

þ K −m2

�
1

sin2θ
þ 1

4
sin2θ

��
S ¼ 0; ð22Þ

which is independent of the frequency Ω and hence
independent of ϵ. To leading order Eq. (16) becomes

σ ¼ 2ϵ ð23Þ

n ¼ −
3

4
mx0ϵ−1; ð24Þ

where we have used Eq. (6) to get the second relation.
For the ISCO we see that n diverges as n ∼ ϵ−1=3. In the
Appendix n is related to the frequency conjugate to the
time of the near-horizon metric. The radial equation (14)
becomes

xðxþ 2ϵÞR00 þ 2ðxþ ϵÞR0 þ V̂R ¼ Nx0δðx − x0Þ; ð25Þ

where we introduce

N ¼ −
ffiffiffi
3

p

2

q
M

Slmðπ=2Þ ð26Þ

and

V̂ ¼ ð1
2
mxðxþ 2Þ − nϵÞ2

xðxþ 2ϵÞ þm2 − K: ð27Þ

We can also simplify (20) and (21) using (6),

_E∞ ¼ 1

8
m2jC∞j2 ð28Þ

_EH ¼ −
3

16
x0m2jCHj2: ð29Þ

Notice that _EH < 0, indicating that these modes are
superradiant.

B. Matched asymptotic expansions overview

For x ≫ x0, Eq. (25) becomes

x2R00 þ 2xR0 þ ½m2ð2þ xþ x2=4Þ − K�R ¼ 0: ð30Þ
[Note that x0 ∼ nϵ by (24).] This is the “far” equation and
its solutions will carry the label “far.” For x ≪ 1 Eq. (25)
instead becomes

xðxþ 2ϵÞR00 þ 2ðxþ ϵÞR0

þ
�ðmxþ nϵÞ2
xðxþ 2ϵÞ þm2 − K

�
R ¼ Nx0δðx − x0Þ. ð31Þ

Equation (31) is the “near” equation and its solutions will
carry the label “near.” The equations agree when
x0 ≪ x ≪ 1, becoming

x2R00 þ 2xR0 þ ½2m2 − K�R ¼ 0: ð32Þ

This is the “region of overlap” and the solutions are

Roverlap ¼ Pxh−1 þQx−h ð33Þ

for constants P and Q, where h is given in (3). This region
corresponds to the x → 0 behavior of solutions of the far
equation (30) and the x → ∞ behavior of solutions to the
near equation (31). Thus each solution of (30) or (31) is
characterized by values of P and Q obtained by looking at
the appropriate asymptotic region. A pair of solutions
approximates a single smooth solution to Eq. (25) [and
hence (14)] when the solutions have the same P and Q.

C. Far solutions

The far equation (30) is a confluent hypergeometric
equation and its solutions can be written in a number of
equivalent ways. We parametrize the general solution by P
and Q,

Rfar ¼ Pxh−1e−imx=2
1F1ðhþ im; 2h; imxÞ

þQx−he−imx=2
1F1ð1 − hþ im; 2ð1 − hÞ; imxÞ:

ð34Þ

That is, at small x we have

Rfar → Pxh−1 þQx−h; x → 0: ð35Þ

Notice that the two solutions are related by h → 1 − h. For
large x the asymptotic behavior is

Rfar → C∞eimx=2x−1þim þD∞e−imx=2x−1−im;

x → ∞: ð36Þ

with

C∞ ¼ P
ðimÞ−hþimΓð2hÞ

Γðhþ imÞ þQ
ðimÞh−1þimΓð2ð1 − hÞÞ

Γð1 − hþ imÞ ;

D∞ ¼ P
ð−imÞ−h−imΓð2hÞ

Γðh − imÞ þQ
ð−imÞh−1−imΓð2ð1 − hÞÞ

Γð1 − h − imÞ :

To be outgoing at infinity we must have D∞ ¼ 0 or

P=Q ¼ ð−imÞ2h−1 Γð1 − 2hÞΓðh − imÞ
Γð2h − 1ÞΓð1 − h − imÞ : ð37Þ

In this case the coefficient C∞ is given by
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C∞ ¼ Q
Γð2 − 2hÞ

Γð1 − hþ imÞ ðimÞh−1þim

×

�
1 −

ð−imÞ2h−1
ðimÞ2h−1

sin½πðhþ imÞ�
sin½πðh − imÞ�

�

¼ −Qð−1Þ−signðmÞh Γðh − imÞ
Γð2h − 1Þ e

πjmjðimÞh−1þim: ð38Þ

D. Near solutions

The near equation (31) is a hypergeometric equation.
We will work with the following two linearly independent
homogeneous solutions,4

Rnear
in ¼ x−

in
2

�
x
2ϵ

þ 1

�
iðn

2
−mÞ

× 2F1

�
h − im; 1 − h − im; 1 − in;−

x
2ϵ

�
; ð39Þ

Rnear
N ¼ x−h

�
2ϵ

x
þ 1

�
iðn

2
−mÞ

× 2F1

�
h − im; hþ iðn −mÞ; 2h;− 2ϵ

x

�
: ð40Þ

The asymptotic behaviors are

Rnear
in → x−in=2 for x → 0; ð41Þ

→ Axh−1 þ Bx−h for x → ∞; ð42Þ

Rnear
N → Cx−in=2 þDxin=2 for x → 0; ð43Þ

→ x−h for x → ∞; ð44Þ

where

A ¼ Γð2h − 1ÞΓð1 − inÞ
Γðh − imÞΓðh − iðn −mÞÞ ð2ϵÞ

1−h−in
2 ; ð45Þ

B ¼ Γð1 − 2hÞΓð1 − inÞ
Γð1 − h − imÞΓð1 − h − iðn −mÞÞ ð2ϵÞ

h−in
2 ; ð46Þ

C ¼ Γð2hÞΓðinÞ
Γðhþ imÞΓðhþ iðn −mÞÞ ð2ϵÞ

−hþin
2 ; ð47Þ

D ¼ Γð2hÞΓð−inÞ
Γðh − imÞΓðh − iðn −mÞÞ ð2ϵÞ

−h−in
2 : ð48Þ

The “in” solution is purely ingoing at the horizon, while
the “N” solution has only the x−h falloff at large x. Here N

stands for Neumann, which is the terminology used in [2].5

The Wronskian W is given by

xðxþ 2ϵÞWðRnear
in ; Rnear

N Þ ¼ ð1 − 2hÞA: ð49Þ

From the properties of the differential equation, the
combination on the lhs above is known to be independent
of x and may therefore be easily computed at large x.

E. Up solution

We now consider the solution with pure outgoing
radiation at infinity, conventionally called the “up” solu-
tion. The normalization is arbitrary and we will choose

Rnear
up ¼ Rnear

in þ αRnear
N ð50Þ

in the near zone. At large x we have Rnear
up ¼

Axh−1 þ ðBþ αÞx−h. Matching to (35), we have P ¼ A
and Q ¼ Bþ α. We can thus write

α ¼ B

�
A
B
Q
P
− 1

�
¼ Bð1=b − 1Þ; ð51Þ

where B is given in (46), and from (37), (45), and (46) we
can compute b≡ ðB=AÞðP=QÞ to be

b ¼ ð−imÞ2h−1 Γð1 − 2hÞ2Γðh − imÞ2
Γð2h − 1Þ2Γð1 − h − imÞ2

×
Γðhþ iðm − nÞÞ

Γð1 − hþ iðm − nÞÞ ð2ϵÞ
2h−1: ð52Þ

The up solution in the far zone is given by Eq. (34) with

P ¼ A; Q ¼ Bþ α ¼ B=b: ð53Þ

The behavior near infinity (which controls the outgoing
radiation) is given by pluggingQ ¼ B=b into (38). We thus
have

C∞
up ¼ −

B
b
ð−1Þ−signðmÞh Γðh − imÞ

Γð2h − 1Þ e
πjmjðimÞh−1þim: ð54Þ

F. Retarded solution

To construct the retarded solution we demand pure
ingoing at the horizon, pure outgoing at infinity, and the
proper match at the delta-function source at x ¼ x0 in
Eq. (31). This is given by

4This choice expedites writing the answer for the horizon flux
in a form that makes manifest the scaling for small ϵ.

5The reason for this terminology is that for real h the falloff x−h

is subdominant compared to x1−h.
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Rnear
ret ðxÞ ¼ Nx0

Rnear
in ðx<ÞRnear

up ðx>Þ
xðxþ 2ϵÞW½Rnear

in ðxÞ; Rnear
up ðxÞ�

¼ Nx0
αAð1 − 2hÞR

near
in ðx<ÞRnear

up ðx>Þ; ð55Þ

where x< and x> are the lesser and greater of x and x0,
respectively. We have used (50) and (49) to evaluate the
Wronskian.

G. Large-n asymptotics

Thus far we have considered exact solutions of the near
Eq. (31), where ϵ (and hence x0 and n) is treated as finite.
We now simplify further using the smallness of ϵ, which
by (24) corresponds to large n.
We first simplify the expressions for A, B, α, and b. For

this we need the following asymptotic approximation,

Γðpþ zÞ
Γðqþ zÞ ¼ zp−q; z → ∞; ð56Þ

which holds for any complex p; q; z. From (45) and (46)
we have

A ¼ Γð2h − 1Þ
Γðh − imÞ ð−inÞ

−imð2ϵÞ−in=2
�
3

2
imx0

�
1−h

; ð57Þ

B ¼ Γð1 − 2hÞ
Γð1 − h − imÞ ð−inÞ

−imð2ϵÞ−in=2
�
3

2
imx0

�
h
; ð58Þ

and from (51) and (52) we have

α ¼ Bð1=b − 1Þ; ð59Þ

b ¼ Γð1 − 2hÞ2
Γð2h − 1Þ2

Γðh − imÞ2
Γð1 − h − imÞ2 ð3m

2x0=2Þ2h−1: ð60Þ

[We repeat Eq. (51) for convenience.] In obtaining these
equations we have used that nϵ ¼ −3mx0=4 from Eq. (24).
When the radial functions are evaluated at x ¼ x0, the

2F1 hypergeometrics in Eqs. (39) and (40) reduce to
WhittakerW andM functions via the confluence identities:

Wν;μðzÞ ¼ lim
c→∞2F1

�
μ − νþ 1

2
;−μ − νþ 1

2
; c; 1 −

c
z

�

× e−z=2zν; ð61Þ

Mν;μðzÞ ¼ lim
b→∞2F1

�
μ − νþ 1

2
; b; 1þ 2μ;

z
b

�

× e−z=2zμþ1
2: ð62Þ

Specifically, we have

Rnear
in ðx0Þ ¼ x

−in
2

0

�
x0
2ϵ

þ 1

�
iðn

2
−mÞ

× e3im=4ð3im=2Þ−imWim;h−1
2
ð3im=2Þ; ð63Þ

Rnear
N ðx0Þ ¼ ð3imx0=2Þ−h

�
2ϵ

x0
þ 1

�
iðn

2
−mÞ

× e3im=4Mim;h−1
2
ð3im=2Þ; ð64Þ

where we have again used that nϵ ¼ −3mx0=4.

H. Horizon flux

To compute the power radiated down the event horizon
we need to examine the x → 0 behavior of our solution and
extract the coefficient CH defined in (18). For x < x0 the
solution is given by

Rnear
ret ðxÞ ¼ Nx0

αAð1 − 2hÞR
near
in ðxÞRnear

up ðx0Þ: ð65Þ

Thus the horizon coefficient is

CH
ret ¼

Nx0
αAð1 − 2hÞC

H
inR

near
up ðx0Þ; ð66Þ

where CH
in is the horizon coefficient for the in solution.

However, from (41) we have simply CH
in ¼ 1. Using

Eqs. (50) and (59), a more convenient expression is

CH
ret ¼

Nx0
ABð1 − 2hÞ

�
BRnear

N ðx0Þ þ
b

1 − b
Rnear
in ðx0Þ

�
: ð67Þ

Using Eqs. (26), (57), (58), (60), (63), and (64) and
simplifying, we find

CH
ret ¼N

2i
3m

e3im=4ð−inÞimð2ϵÞin=2
�
1þ2ϵ

x0

�
iðn

2
−mÞ

×
Γðh− imÞ
Γð2hÞ

�
ℳþ b

1−b
Γð1−h− imÞ
Γð1−2hÞ W

�
; ð68Þ

where we introduce

ℳ ¼ Mim;h−1
2

�
3im
2

�
; W ¼ Wim;h−1

2

�
3im
2

�
: ð69Þ

Squaring and plugging into (29) gives the power radiated,

_EH ¼ −
q2

16M2
x0e−πjmjS

�
π

2

�
2
����Γðh − imÞ

Γð2hÞ
����
2

×

����ℳþ b
1 − b

Γð1 − h − imÞ
Γð1 − 2hÞ W

����
2

: ð70Þ
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The energy flux down the horizon scales as x0, so that for
the ISCO it scales as ϵ2=3. The formula for b was given in
Eq. (60). When h has an imaginary part, b is order unity
and oscillatory in ϵ, causing _EH to have small oscillations.
When h is real, b ≪ 1 and the entire term proportional to
W drops out at the leading order, making there be no
oscillations.

I. Infinity flux

For x > x0 the solution is given in the near zone by

Rnear
ret ðxÞ ¼ Nx0

αAð1 − 2hÞR
near
in ðx0ÞRnear

up ðxÞ: ð71Þ

This solution is valid in the near zone, with x → ∞
corresponding to the overlap region rather than asymptotic
infinity. To determine the behavior near asymptotic infinity
one has to match to solutions of the far region. However,
this has already been done when constructing the “up”
solution. Thus the retarded solution near infinity is deter-
mined by

C∞
ret ¼

Nx0
αAð1 − 2hÞR

near
in ðx0ÞC∞

up: ð72Þ

Using Eq. (54) for C∞
up gives

C∞
ret ¼ Nx0

1

1 − b
Rnear
in ðx0Þ
A

× ð−1Þ−signðmÞh Γðh − imÞ
Γð2hÞ eπjmjðimÞh−1þim: ð73Þ

Using Eqs. (63) and (57) and simplifying gives

C∞
ret ¼Nxh0e

3im=4

�
2ϵ

x0
þ1

�
iðn

2
−mÞ2h−1

1−b
Γðh− imÞ2
Γð2hÞ2

× ð−1Þ−signðmÞheπjmjðimÞh−1þimð3im=2Þh−1W; ð74Þ

where W was defined in (69). Squaring and plugging
into (28) gives the infinity flux,

_E∞ ¼ q2

24M2
ð3m2x0=2Þ2Re½h�m−2eπjmjS

�
π

2

�
2

×

���� 2h − 1

1 − b
Γðh − imÞ2
Γð2hÞ2 W

����
2

: ð75Þ

Recall that b is given in Eq. (60) andW is given in Eq. (69).

The energy flux to infinity scales as x2Re½h�0 , so that for the
ISCO it scales as ϵð4=3ÞRe½h�. The dominant modes are when
h has an imaginary part, in which case Re½h� ¼ 1=2
and b ∼ 1 with oscillations. The modes with real h are

subdominant with b ≪ 1 and no oscillations at lead-
ing order.

J. Agreement with extremal calculation

Reference [2] solved the physically distinct problem of
the radiation from a particle orbiting at a radius x0 ≪ 1 in
precisely extremal Kerr. Remarkably, our final answer (75)
for the flux to infinity agrees precisely with the analogous
answer (3.54) of [2] when we identify the x coordinates (4)
in extremal and near-extremal Kerr.6 In [2] the horizon flux
was not explicitly given for the retarded solution, but
performing the calculation shows perfect agreement as
well. Near infinity we can also sensibly compare the
detailed radiation pattern, which agrees as well: The
asymptotic behavior of the retarded field is given by
(74) together with (36) and D∞ ¼ 0, which differs from
the expressions in [2] only by the phase exp½3im=4�
ð2ϵ=x0 þ 1Þiðn=2−mÞ. This phase is of the form
exp½imfðϵÞ� and hence can be eliminated at any fixed ϵ
by the redefinition ϕ → ϕ − fðϵÞ.
For real h the horizon flux (70) is in perfect agreement

with the particle number flux (3.27) of [2]. Using the Kerr/
CFT dictionary, this flux was calculated independently in
the CFT as the appropriate transition rate induced on the
state of the system due to coupling to a source dual to the
orbiting particle [Eq. (3.40) of [2]]. Note, however, that
the boundary conditions used for deriving (3.27) of [2]
assumed Neumann falloff of the near solution [rather than
the “up” falloff of (50)]. The boundary conditions used here
for the retarded solution were termed “leaky boundary
conditions” in [2] because they allow radiation to leak out
of the near region and reach future null infinity. However,
as we saw in the previous section, for real h, the radiation
that leaks to infinity here is subdominant and the CFT
calculations of [2] still account for the flux down the
horizon at leading order.

IV. GRAVITATIONAL CASE

The problem of the gravitational radiation from a particle
of mass m0 orbiting on the near-extremal ISCO can be
solved in a manner precisely analogous to the scalar
calculation of Sec. III. However, given the agreement in
the scalar case with the analogous calculation of [2]
(Sec. III J), we can instead obtain analytic expressions
by postulating agreement in the gravitational case as well.
The expression for the gravitational flux at infinity is given
in Eq. (4.41) of [2]. The flux at the horizon was not
computed in [2], but it is a straightforward exercise to do so.
Identifying these expressions using the x-coordinate radius
of the particle produces expressions for the power radiated
in our near-extremal ISCO problem. We confirm these
expressions numerically.

6Reference [2] uses the notation r for our x and λ for our q.
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We now present these results. In some formulas we use
the variable s ¼ −2 (the spin) to emphasize similarity to the
scalar case s ¼ 0. For each mode l ≥ 2 and jmj ≤ l the
fluxes are given by

_EH ¼ −
m2

0

2632M2

1

jCj2 x0e
−πjmj jΓðh − im − sÞj2

jΓð2hÞj2

×

����ℳs þ
bs

1 − bs

Γð1 − h − im − sÞ
Γð1 − 2hÞ Ws

����
2

ð76Þ

_E∞¼ m2
0

2533M2
ð3m2x0=2Þ2Re½h�m−2eπjmj

×

����2h−1

1−bs

Γðh− im− sÞΓðh− imþ sÞ
Γð2hÞ2 Ws

����
2

; ð77Þ

where

bs ¼
Γð1 − 2hÞ2
Γð2h − 1Þ2

Γðh − im − sÞ
Γð1 − h − im − sÞ

Γðh − imþ sÞ
Γð1 − h − imþ sÞ

×

�
3m2x0

2

�
2h−1

ð78Þ

ℳs ¼ 2½ðh2 − hþ 6 − imÞSþ 4ð2iþmÞS0 − 4S00�
×Mim−2;h−1

2
ð3im=2Þ − ðh − 2þ imÞ

× ½ð4þ 3imÞS − 8iS0�Mim−1;h−1
2
ð3im=2Þ ð79Þ

Ws ¼ 2½ðh2 − hþ 6 − imÞSþ 4ð2iþmÞS0 − 4S00�
×Wim−2;h−1

2
ð3im=2Þ þ ½ð4þ 3imÞS − 8iS0�

×Wim−1;h−1
2
ð3im=2Þ: ð80Þ

jCj2 ¼ ½ð−2þ hÞ2 þm2�½ð−1þ hÞ2 þm2�
× ½h2 þm2�½ð1þ hÞ2 þm2�: ð81Þ

The spin-2 spheroidal harmonics SðθÞ and their eigenvalues
K are defined to be the regular solutions to

�∂θðsin θ∂θÞ
sin θ

þ Ks
lm −

m2 þ s2 þ 2ms cos θ
sin2θ

−
m2

4
sin2θ −ms cos θ

�
Sslm ¼ 0; ð82Þ

normalized so that
R
sin θdθS2 ¼ 1. In Eqs. (79) and (80),

a prime represents a θ-derivative and the harmonics are
evaluated at the equator θ ¼ π=2. The spin-2 spheroidal
harmonics and their eigenvalues are not native in
MATHEMATICA, but are straightforward to compute using
(e.g.) the spectral method of [24]. We provide a notebook
online [25] that implements this method and evaluates the
complete analytic flux formulas.

Equation (78) for bs generalizes the scalar expression
(52) for b, reducing to that expression when s ¼ 0.
Equations (79) and (80) for ℳs and Ws generalize ℳ
and W in the sense that they play analogous roles in the
expressions for the energy flux, but do not reduce to their
scalar counterparts in any direct sense. The formula for
jCj2 is the same as Eq. (3.23) of [20] (specialized to the
modes appearing in our calculation); it accounts for relating
spin �2 quantities in the Newman-Penrose formalism.
As in the scalar case, bs ≪ 1 for real h, while bs ∼ 1

(and is oscillatory) for complex h. The character of the
fluxes is thus precisely analogous to the scalar case;
we refer the reader to the text below (70) and (75) for
discussion.

V. NUMERICAL RESULTS

In this section we describe two new numerical codes and
the comparison of their results with our analytic flux
formulas. It was necessary to construct these new codes
as previously developed software did not work sufficiently
close to extremality to allow for a clear comparison with
the analytic results. Typically the maximum spin achievable
in these older codes was around ϵ≃ 10−3, equivalently
a≃ 0.9999995M [23,24]. The two new codes we present
here mark significant improvements over previous tech-
nology, allowing us to work all the way down to ϵ ¼ 10−13

or a ¼ 0.999999999999999999999999995M.
Our new codes feature three key improvements. First,

the codes are implemented in MATHEMATICA, which allows
us to work beyond standard machine precision. Second, for
the gravitational case we derive new, more accurate,
asymptotic approximations used for boundary conditions.
Third, again in the gravitational case, we employ a simpler
matching procedure to construct inhomogeneous solutions
to the Teukolsky equation than that presented in Ref. [24].
We briefly discuss these points in the following subsection
before presenting the comparison between the numerical
and analytic results in Sec. V B.

A. Numerical implementation

The scalar problem was defined at the start of Sec. III.
The main task is to solve the spin-zero Teukolsky equa-
tion (14) with boundary conditions (19) corresponding
to no incoming radiation. We use a reimplementation in
MATHEMATICA of the algorithm presented in Ref. [23].
Briefly, the steps are as follows: (i) construct unit normal-
ized boundary conditions for the homogeneous solutions
far from the particle; (ii) using these boundary conditions,
numerically integrate the field equation to get Rlm and its
derivative at the particle; (iii) compute weighting coeffi-
cients for the inhomogeneous solutions via the variations of
parameters method. As our source contains a delta function
this reduces to a matching procedure at the particle’s radius.
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We refer the reader to Ref. [23] for the explicit details of
each of these steps.7

For gravitational perturbations we opt to solve the spin-
two Teukolsky equation. In this scenario we cannot proceed
exactly as in the scalar case as the “long-ranged” potential
of the Teukolsky equation makes it numerically challeng-
ing to avoid contamination from modes with incoming
radiation. This is a well-known problem which is neatly
circumvented by transforming to a new variable as was first
described by Sasaki and Nakamura [26]. Using the new
variable the field equation has a “short-ranged” potential
and, as such, is better suited to numerical treatment. Once
the Sasaki-Nakamura radial function and its derivatives
are computed at the particle, we transform back to the
Teukolsky radial function and continue, as in the scalar
case, to construct the inhomogeneous solutions via match-
ing. From the matching coefficients we then extract the
radiated fluxes. A similar procedure was carried out by
Hughes [24]. In addition to implementing our code in
MATHEMATICA, we make some important improvements as
we outline now.
The Sasaki-Nakamura equation takes the form [26]

dX
dr2�

− FðrÞ dX
dr�

−UðrÞXðrÞ ¼ 0; ð83Þ

where r� is the tortoise coordinate defined by dr�=dr ¼
ðr2 þ a2Þ=Δ with Δ ¼ r2 − 2Mrþ a2. The functions
FðrÞ and UðrÞ are rather unwieldy and can be found in
Appendix B of Ref. [24]. Asymptotically, as the horizon
and spatial infinity are approached, the “outer” and “inner”
radial solutions behave as

X∞ðr� → ∞Þ ∼ eiωr� ; ð84Þ

XHðr� → −∞Þ ∼ e−iðω−mΩHÞr� ; ð85Þ

respectively. In our numerical procedure we must work on
a finite radial domain. Let us denote the boundaries of
this domain by rin and rout. In order to construct suitable
boundary conditions at rin=out we expand the above asymp-
totic forms with the following ansatz:

X∞ ¼ eiωr�
Xk∞max

k¼0

a∞k ðωroutÞ−k; ð86Þ

XH ¼ e−iðω−mΩHÞr�
XkHmax

k¼0

aHk ðrin − rþÞk: ð87Þ

The a∞=H
k coefficients of these series expansions are

determined by substituting the expansions into the
Sasaki-Nakamura equation (83) and solving for the result-
ing recursion relations. Explicitly finding the recursion
relations is one point where our algorithm differs from
previous work. For example, the first three coefficients in
Eq. (86) were explicitly computed in Ref. [24]; the first four
coefficients were given Ref. [27]. Both aforementioned
works just set aH0 ¼ 1 and used only the first term in the
horizon expansion, i.e., kHmax ¼ 0. We find that using just
these few terms in the boundary condition expansions is
insufficient for computations around rapidly rotating
black holes. With our recursion relations we can compute
arbitrary numbers of coefficients which allows us to place
the numerical boundaries for the inner and outer solutions
further from the horizon and closer to the edge of the wave
zone, respectively.
The complicated form of the functions FðrÞ and UðrÞ

in Eq. (83) makes solving for the recursion relations
challenging, even with the assistance of computer algebra
packages. Such recursion relations are not unique but the
ones we identify have 13 and 14 terms for the infinity and
horizon expansions, respectively. The recursion relations
we compute are too lengthy to be displayed here but
we make them available in electronic format online [25].
To check the recursion relations we set a∞=H

0 ¼ 1 (we
are free to set this to any nonzero number as we are
solving for the homogeneous solutions), compute a
number of terms in the expansions, substitute the result-
ing expansion back into the homogeneous field equa-
tion (83) and check that is it satisfied. For the 2-2 mode
with the particle on the ISCO and a≲ 0.99M we find we
can satisfy the field equation at rout ¼ 100M and rin ¼
rþ þ 10−2M to over 100 significant digits with ease. As
we increase the spin of the black hole the outer boundary
does not need to move but we find we must move the
inner boundary radius inwards so that by the time we
reach ϵ ¼ 10−13 we must place the inner boundary at
rin ¼ rþ þ 10−15M to achieve similar accuracy.
Lastly, we briefly mention an improvement in the

practical application of the variations of parameters method
used to construct the inhomogeneous solutions by integrat-
ing the homogeneous solutions against the source. With
this method it is necessary to compute the Wronskian of
homogeneous solutions and in Ref. [24] this is calculated
at a large radius. To achieve this a variant of Richardson
extrapolation was used to accurately calculate the inner
homogeneous solution at large radii. This step is unnec-
essary as the Wronskian, defined with derivatives with
respect to r�, is a constant for all r and so can be calculated
at any suitable radius. We find it convenient to calculate the
Wronskian at the particle’s orbital radius where we can
calculate the homogeneous solutions to high accuracy via
direct numerical integration of the field equation.

7We correct a mistake in the horizon-side boundary conditions
in Ref. [23]. The arXiv version has been updated to give the
correct recursion relation.

GRALLA, PORFYRIADIS, AND WARBURTON PHYSICAL REVIEW D 92, 064029 (2015)

064029-10



As a test of our new Sasaki-Nakamura code we com-
pared our results for the fluxes against those of Ref. [24] for
a ≤ 0.99M, finding agreement to over eight significant
figures, which is consistent with the given error bars. We
also compare against results of Ref. [28], which solves the
Teukolsky equation as a series of special functions [26],
finding 13 significant figures of agreement.

B. Comparison of results

In this section we compare the fluxes computed with our
new numerical codes against our analytic flux formulas
given by Eqs. (70) and (75) for the scalar case and Eqs. (76)
and (77) for the gravitational case. The results for the scalar
and gravitational cases are very similar and so we will
concentrate on the physically more interesting gravitational
case.
In making our calculations we need to evaluate the

spin-weighted spheroidal harmonics and their eigen-
values which are used in both the analytic formula
and the numerical procedure. For the spin-0 harmonics
we use MATHEMATICA’s inbuilt SpheroidalPS and
SpheroidalEigenvalue functions. For the spin-2
harmonics we use the spectral decomposition method
described in Appendix A of Ref. [24]. For ease of
comparison we provide a MATHEMATICA notebook online
that evaluates the analytic flux formulas [25].
Our main results are presented in Figs. 3 and 4 and

Table I for the gravitational case. For the scalar case we
give numerical data in Table II. For small ϵ we find the
numerical and analytic results agree, as expected. As an
example, for the gravitational 2-2 modewe find, for the flux
at infinity, that the relative difference between the analyti-
cally calculated flux, _EðanÞ

∞ , and numerically calculated flux,
_EðnumÞ
∞ , is around 6.6% for ϵ ¼ 10−2. The agreement

improves by ϵ ¼ 10−13 to over eight significant figures.

For all modes the horizon flux scales as ϵ2=3. On the
other hand, the scaling of the energy flux radiated to
infinity depends on the mode in question, going as ϵp

where p ¼ 4=3Re½h�. For modes with m ∼ l the scaling
exponent is p ¼ 2=3 but for low m modes p is larger.
Which modes are dominant or subdominant is illustrated in
Fig. 1 for l ≤ 15. For l ¼ 2 this difference in scaling can
be seen explicitly by comparing the two plots in Fig. 3. In
addition to the leading order scaling, the horizon flux and
the infinity flux for modes with p ¼ 2=3 exhibit oscilla-
tions. Taking the ratio of the horizon and infinity fluxes
removes this leading-order behavior and makes the oscil-
lations clear, as we show in Fig. 4.

FIG. 4 (color online). The ratio of the infinity flux to horizon
flux for the 2-2 mode in the gravitational case. The oscillations
occur in both the infinity and horizon fluxes, but are
dominated by the ϵ2=3 scaling. The ratio removes the dominant
scaling and makes the oscillations clear. The inset shows the
absolute difference between the analytic and numerical results
for the ratio of the fluxes and demonstrates that our numerical
results are in good agreement with the analytic formula
through to ϵ ¼ 10−13.

(a) l = 2, m = 2 (b) l = 2, m = 1

FIG. 3 (color online). Energy flux to infinity for the 2-2 and 2-1 modes in the gravitational case. The analytic results and numerical
results are denoted by _EðanÞ

∞ and _EðnumÞ
∞ , respectively. The 2-2 mode has h≃ 1=2þ 2.050928i and hence an exponent of p ¼ 2=3, while

the 2-1 mode has h≃ 2.419070 and an exponent of p≃ 3.225427. The 2-2 mode also has oscillations, too small to be seen on this scale
but clearly visible in Fig. 4. Note that the results in this figure have been adimensionalized so that _EðhereÞ ≡ ðM=m0Þ2 _E.
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The excellent agreement we observe between our ana-
lytical and numerical results gives us confidence in both. In
particular, numerical codes often struggle in such high-spin
regimes and we envisage that our analytic formula will
provide a valuable benchmark for future numerical work on
rapidly rotating black holes.
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APPENDIX: NEAR-HORIZON LIMITS
AND SYMMETRIES

In this Appendix we review the NHEK limits and how
their enhanced symmetry naturally assigns a conformal
weight h to certain solutions of the wave equation.While all
of this material has appeared in some form in the literature,
the references vary in their choices of notation, coordinate
patch, and symmetry algebra basis. We present the relevant
results here with choices suited to our calculation.

TABLE I. Sample numerical results and their comparison with the analytic formula for the gravitational 2-2 mode.
The second and third columns give the flux radiated to infinity and through the horizon, respectively. The fourth and
fifth columns give the relative difference between the numerical results and the analytic formulas, i.e.,

Δrel
_E∞=H ¼ 1 − _EðnumÞ

∞=H = _EðanÞ
∞=H . Note that the data in columns two and three have been adimensionalized so that

_EðhereÞ ≡ ðM=m0Þ2 _E.
ϵ _E∞

_EH Δrel
_E∞ Δrel

_EH

10−1 1.71745312 × 10−2 −3.11049626 × 10−3 3.5 × 10−1 6.0 × 10−1

10−2 5.33839225 × 10−3 −1.43536969 × 10−3 6.6 × 10−2 1.5 × 10−1

10−3 1.21422396 × 10−3 −3.50339388 × 10−4 1.3 × 10−2 3.2 × 10−2

10−4 2.64399402 × 10−4 −7.74081267 × 10−5 2.9 × 10−3 6.8 × 10−3

10−5 5.70914114 × 10−5 −1.67667887 × 10−5 6.1 × 10−4 1.5 × 10−3

10−6 1.23059093 × 10−5 −3.61646072 × 10−6 1.3 × 10−4 3.2 × 10−4

10−7 2.65150343 × 10−6 −7.79336251 × 10−7 2.9 × 10−5 6.8 × 10−5

10−8 5.71261941 × 10−7 −1.67911892 × 10−7 6.1 × 10−6 1.5 × 10−5

10−9 1.23075261 × 10−7 −3.61759396 × 10−8 1.3 × 10−6 3.2 × 10−6

10−10 2.65157915 × 10−8 −7.79388978 × 10−9 2.9 × 10−7 6.8 × 10−7

10−11 5.71265599 × 10−9 −1.67914365 × 10−9 6.1 × 10−8 1.5 × 10−7

10−12 1.23075461 × 10−9 −3.61760597 × 10−10 1.3 × 10−8 3.2 × 10−8

10−13 2.65158073 × 10−10 −7.79389645 × 10−11 2.9 × 10−9 6.8 × 10−9

TABLE II. The same as Table I but for a particle carrying scalar charge orbiting at the ISCO. The data in columns
two and three have been adimensionalized so that _EðhereÞ ≡ ðM=qÞ2 _E.
ϵ _E∞

_EH Δrel
_E∞ Δrel

_EH

10−1 5.85189833 × 10−4 −3.34966656 × 10−4 −7.4 × 10−1 6.1 × 10−1

10−2 1.06917341 × 10−4 −1.56686813 × 10−4 −4.6 × 10−1 1.5 × 10−1

10−3 1.74509810 × 10−5 −3.84548334 × 10−5 −1.2 × 10−1 3.3 × 10−2

10−4 3.48448909 × 10−6 −8.51021948 × 10−6 −2.6 × 10−2 7.2 × 10−3

10−5 7.30812181 × 10−7 −1.84356886 × 10−6 −5.6 × 10−3 1.6 × 10−3

10−6 1.57583045 × 10−7 −3.97754374 × 10−7 −1.2 × 10−3 3.3 × 10−4

10−7 3.38175817 × 10−8 −8.56962339 × 10−8 −2.6 × 10−4 7.2 × 10−5

10−8 7.28828188 × 10−9 −1.84681469 × 10−8 −5.5 × 10−5 1.6 × 10−5

10−9 1.57315673 × 10−9 −3.97796344 × 10−9 −1.2 × 10−5 3.3 × 10−6

10−10 3.37478969 × 10−10 −8.57211607 × 10−10 −2.6 × 10−6 7.2 × 10−7

10−11 7.31738299 × 10−11 −1.84647008 × 10−10 −5.6 × 10−7 1.6 × 10−7

10−12 1.56369119 × 10−11 −3.97866228 × 10−11 −1.2 × 10−7 3.4 × 10−8

10−13 3.40087145 × 10−12 −8.57097932 × 10−12 −2.6 × 10−8 7.2 × 10−9
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1. Far limit

A convenient form for the Kerr exterior metric in BL
coordinates is

ds2¼−
Δ
ρ2
ðdt−asin2θdϕÞ2þsin2θ

ρ2
ððr2þa2Þdϕ−adtÞ2

þρ2

Δ
dr2þρ2dθ2; ðA1Þ

where Δ ¼ r2 − 2Mrþ a2 and ρ2 ¼ r2 þ a2 cos2 θ.
Setting a ¼ M (equivalently ϵ ¼ 0) gives extremal Kerr.
More formally, we could introduce an auxiliary parameter
δ by

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða=MÞ2

q
¼ ϵ̄δ ðA2Þ

for some fixed ϵ̄. Letting δ → 0 at fixed BL coordinates
produces extremal Kerr. In the language of Geroch [29], we
use the BL coordinates to identify metrics at different
values of δ.

2. Near-horizon limit

We are free, however, to identify the metrics differently.
If we still use (A2) but instead hold fixed

x̄ ¼ x
δ
¼ r − rþ

rþ
δ−1; t̄ ¼ t

2M
δ; ϕ̄ ¼ ϕ −

t
2M

;

ðA3Þ

then letting δ → 0 gives

ds2 ¼ 2M2ΓðθÞ
�
−x̄ðx̄þ 2ϵ̄Þdt̄2 þ dx̄2

x̄ðx̄þ 2ϵ̄Þ

þ dθ2 þ Λ2ðθÞ½dϕ̄þ ðx̄þ ϵ̄Þdt̄�2
	
; ðA4Þ

where ΓðθÞ ¼ ð1þ cos2θÞ=2 and ΛðθÞ ¼ 2 sin θ=
ð1þ cos2 θÞ. This is the near-NHEK metric [30]. This
limit is expected to be useful for near-extremal, near-
horizon physics. It corresponds to the lowest “crack” in the
throats diagram, Fig. 2.
It is also the near-horizon metric in the more pedestrian

sense that it agrees with near-extremal Kerr near the
horizon. That is to say, Eq. (A4) may also be obtained
by using the coordinates (A3) with δ ¼ 1 and using x ≪ 1
in the metric components, keeping to leading order in each
component. The redefinition of the ϕ coordinate in (A3) is
essential for the resulting metric to be nonsingular, making
these “good” near-horizon coordinates.
Consider a scalar field Φ in nonextremal Kerr (ϵ > 0)

with the usual harmonic t and ϕ dependence. Expressing in
the scaled coordinates (A3) gives

Φ ∼ e−iωteimϕ ¼ e−iω̄ t̄eimϕ̄; ðA5Þ

where we define

ω̄ ¼ 2Mω −m
δ

: ðA6Þ

If we have a family of scalar fields, one for each ϵ, then for
this family to have a good near-horizon limit ω must
approach m=ð2MÞ linearly with ϵ. [Recall that 1=ð2MÞ is
the extremal limit of the horizon angular velocity.] For a
circular orbit of angular velocity Ω we have ω ¼ mΩ. Thus
for the associated mode functions to have a good near-
horizon limit, Ω must approach the extremal horizon
frequency linearly with ϵ.
For the ISCO, Ω − 1=ð2MÞ ∼ ϵ2=3 and hence ω̄ ∼ δ−1=3.

The n defined in the text (16) corresponds to ω̄=ϵ̄ with
δ ¼ 1, explaining n ∼ ϵ−1=3 as ϵ → 0 (24). The coordinate
position of the ISCO also diverges in this limit, since
x0 ∼ ϵ2=3 and hence x̄ ∼ δ−1=3. Thus from the near-NHEK
point of view, the ISCO orbits infinitely far away and
infinitely fast. This is the physical origin of the infinitely
oscillating phases and the need for large-n asymptotics.

3. Intermediate (ISCO) limit

In order to avoid these difficulties one could instead
define an alternate limit by keeping (A2) but replacing (A3)
with

~x ¼ r − rþ
rþ

δ−2=3; ~t ¼ t
2M

δ2=3; ~ϕ ¼ ϕ −
t

2M
;

ðA7Þ

which will keep the ISCO radius and frequency finite. In
this limit the metric becomes

ds2 ¼ 2M2Γ
�
−~x2d~t2 þ d~x2

~x2
þ dθ2 þ Λ2½d ~ϕþ ~xd~t�2

	
;

ðA8Þ

where Γ and Λ are given below (A4). This metric agrees
with the near metric (A4) when x̄ ≫ ϵ̄ and with the far
metric (extremal Kerr) when x ≪ 1. It too can be derived
the pedestrian way, that is to say, Eq. (A8) may also be
obtained by using the coordinates (A3) with δ ¼ 1 and
using ϵ ≪ x ≪ 1 in the metric components, keeping to
leading order in each component. The ISCO limit is thus
intermediate between the near and far regions, correspond-
ing to the middle region in the throats diagram, Fig. 2.
Equation (A8) is a nonsingular spacetime; in fact it is

diffeomorphic to (A4). Equation (A8) is generally called
NHEK or “Poincare NHEK” and it is the form originally
discovered in [5] as a limit of precisely extremal Kerr.
This metric also approximates the near-horizon region of
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precisely extremal black hole in the pedestrian sense.
Poincaré NHEK and near-NHEK cover different patches
of the maximally extended spacetime.
Despite its adaptation to the ISCO, the limit (A7) does

not appear to be useful in calculating the radiation from a
particle orbiting there. Since the metric does not agree with
near-extreme Kerr at the horizon or at infinity, it cannot be
used to impose boundary conditions at either place. We
have found it more useful to include the ISCO region in our
near region in the main body for the purposes of calcu-
lation, defined as x ≪ 1 without deciding between x ∼ ϵ
(the near-horizon region) and x ∼ ϵ2=3 (the intermediate
region). Note that the ISCO is not in our region of overlap,
since that region has x ≫ ϵ2=3 (as well as x ≪ 1).
Correspondingly, the wave equation associated with the
ISCO limit, that is the NHEK wave equation, does not
appear explicitly in our calculation. Note however the
connection to the extremal calculation of [2], discussed in
the Introduction and in Sec. III J, which involved solving
explicitly the NHEK wave equation.

4. Symmetry group and conformal weights

The NHEK spacetime has an enhanced SLð2; RÞ ×Uð1Þ
isometry group. The explicit form of the Killing fields
depends on the coordinates and the choice of basis. We will
be agnostic to both, and simply name the Killing fields H0,
H� and W0, demanding only the SLð2; RÞ commutation
relations ½H0; H�� ¼ ∓H�, ½Hþ; H−� ¼ 2H0 and the Uð1Þ
generator W0 commuting with everything.
For any complex number h and integer m, an infinite-

dimensional representation fψh;m;kg with k ≥ 0 may be
constructed as follows. The member ψh;m;0 should satisfy
the highest-weight condition,

LHþψh;m;0 ¼ 0 ðA9aÞ

LH0
ψh;m;0 ¼ hψ ; ðA9bÞ

together with LW0
ψh;m;0 ¼ imψ . The remaining members

of the representation are formed by repeated application
of H−,

ψh;m;k ¼ ðLH−
Þkψh;m;0: ðA10Þ

Here L is the Lie derivative. Since SLð2; RÞ is not compact,
this tower does not terminate and the representation is
infinite dimensional.
Solutions to the wave equation may be organized in

representations of the isometry group. For simplicity, we
work in the case of a scalar field Φ and drop circumflexes
in order to be agnostic between the coordinates (A4)
and (A8). Adopting the decomposition

Φ ¼ Qðx; tÞSðθÞeimϕ; ðA11Þ

with S satisfying the angular equation (22), the wave
equation implies

½LH0
ðLH0

− 1Þ − LH−
LHþ�Φ ¼ ðK − 2m2ÞΦ: ðA12Þ

The operator on the lhs is the Casimir of SLð2; RÞ; thusΦ is
an eigenstate of the Casimir with eigenvalue K − 2m2. If Φ
is also highest weight (A9) then this becomes

hðh − 1Þ þ 2m2 − K ¼ 0; ðA13Þ
which is solved by

h ¼ 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K − 2m2 þ 1

4

r
: ðA14Þ

[In the text we define h to be the plus branch of (A14). The
minus branch appears as 1 − h in (e.g.) (33).] The highest-
weight condition thus replaces the second-order differential
equation (A12) with two first-order equations (A9a)
and (A9b). Once the highest-weight solution is found by
solving these equations, further solutions arise from its
descendants via (A10). In this way one constructs an
infinite tower of solutions for each fK;mg angular mode.
It is generally believed that these comprise a complete basis
for solutions of the wave equation. Our near equation (31)
is the radial near-NHEK wave equation for the ansatz
Φ ¼ RðxÞe−iðn−mÞϵtSðθÞeimϕ. Therefore, the near solutions
RnearðxÞe−iðn−mÞϵtSðθÞeimϕ must be expressible as linear
combinations of the members of the highest weight
representations labeled by (A14).

5. Where is the extremal Kerr ISCO?

Having introduced three inequivalent limits and dis-
cussed their properties, we conclude with a discussion of
the “location” of the extremal Kerr ISCO, an innocent
question with an amusingly complicated answer.
The far limit produces the extremal Kerr exterior and

the ISCO exits the domain, approaching r ¼ M (x ¼ 0).
Correspondingly, every equatorial (prograde) circular orbit
in extremal Kerr is stable. If we complete the domain
by including the horizon (e.g. taking the limit at fixed
Doran coordinate), then the ISCO approaches the horizon
generators [31].
The near-horizon limit produces near-NHEK (A4) and

the ISCO also exits the domain, approaching x̄0 → ∞.
Correspondingly, there are no stable circular orbits in near-
NHEK [3].
The intermediate limit produces NHEK (A8) and ISCO

achieves a finite coordinate value ~x0 ¼ 21=3. Is this, then,
the location of the ISCO? No: redefining (A7) by ~x → c~x
and ~t → ~t=c for a number c, we produce the same limiting
metric (A8) but find that the ISCO instead approached
~x0 ¼ c × 21=3. We can therefore put the ISCO anywhere we
want. Within (A8) itself this can be seen as the fact that
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~x → c~x and ~t → ~t=c is a symmetry—the “dilation” member of the enhanced SLð2; RÞ symmetry group. This symmetry
maps circular orbits to circular orbits, making all circular orbits physically equivalent within NHEK.8 In particular, they are
all marginally stable [3], like the ISCO.
Where is the extremal Kerr ISCO? It is on the horizon in the far limit, at infinity in the near-horizon limit, and in the

intermediate limit, it is everywhere!
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