66 research outputs found

    A Polyadenylation Factor Subunit Implicated in Regulating Oxidative Signaling in Arabidopsis thaliana

    Get PDF
    BACKGROUND: Plants respond to many unfavorable environmental conditions via signaling mediated by altered levels of various reactive oxygen species (ROS). To gain additional insight into oxidative signaling responses, Arabidopsis mutants that exhibited tolerance to oxidative stress were isolated. We describe herein the isolation and characterization of one such mutant, oxt6. METHODOLOGY/PRINCIPAL FINDINGS: The oxt6 mutation is due to the disruption of a complex gene (At1g30460) that encodes the Arabidopsis ortholog of the 30-kD subunit of the cleavage and polyadenylation specificity factor (CPSF30) as well as a larger, related 65-kD protein. Expression of mRNAs encoding Arabidopsis CPSF30 alone was able to restore wild-type growth and stress susceptibility to the oxt6 mutant. Transcriptional profiling and single gene expression studies show elevated constitutive expression of a subset of genes that encode proteins containing thioredoxin- and glutaredoxin-related domains in the oxt6 mutant, suggesting that stress can be ameliorated by these gene classes. Bulk poly(A) tail length was not seemingly affected in the oxt6 mutant, but poly(A) site selection was different, indicating a subtle effect on polyadenylation in the mutant. CONCLUSIONS/SIGNIFICANCE: These results implicate the Arabidopsis CPSF30 protein in the posttranscriptional control of the responses of plants to stress, and in particular to the expression of a set of genes that suffices to confer tolerance to oxidative stress

    Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin

    Get PDF
    Background: Grapevine berry, a nonclimacteric fruit, has three developmental stages; the last one is when berrycolor and sugar increase. Flavors derived from terpenoid and fatty acid metabolism develop at the very end of thisripening stage. The transcriptomic response of pulp and skin of Cabernet Sauvignon berries in the late stages ofripening between 22 and 37 \ub0Brix was assessed using whole-genome micorarrays.Results: The transcript abundance of approximately 18,000 genes changed with \ub0Brix and tissue type. There were alarge number of changes in many gene ontology (GO) categories involving metabolism, signaling and abioticstress. GO categories reflecting tissue differences were overrepresented in photosynthesis, isoprenoid metabolismand pigment biosynthesis. Detailed analysis of the interaction of the skin and pulp with \ub0Brix revealed that therewere statistically significantly higher abundances of transcripts changing with \ub0Brix in the skin that were involved inethylene signaling, isoprenoid and fatty acid metabolism. Many transcripts were peaking around known optimalfruit stages for flavor production. The transcript abundance of approximately two-thirds of the AP2/ERF superfamilyof transcription factors changed during these developmental stages. The transcript abundance of a unique clade ofERF6-type transcription factors had the largest changes in the skin and clustered with genes involved in ethylene,senescence, and fruit flavor production including ACC oxidase, terpene synthases, and lipoxygenases. The transcriptabundance of important transcription factors involved in fruit ripening was also higher in the skin.Conclusions: A detailed analysis of the transcriptome dynamics during late stages of ripening of grapevine berriesrevealed that these berries went through massive transcriptional changes in gene ontology categories involvingchemical signaling and metabolism in both the pulp and skin, particularly in the skin. Changes in the transcriptabundance of genes involved in the ethylene signaling pathway of this nonclimacteric fruit were statisticallysignificant in the late stages of ripening when the production of transcripts for important flavor and aroma compoundswere at their highest. Ethylene transcription factors known to play a role in leaf senescence also appear to play a role infruit senescence. Ethylene may play a bigger role than previously thought in this non-climacteric fruit

    Inhibition of a receptor-operated calcium channel in pig aortic microsomes by cyclic GMP-dependent protein kinase.

    No full text
    We have further characterized a putative receptor-operated Ca2+ channel that is activated by histamine and guanosine 5'-[beta gamma-imido]triphosphate. Insensitivity to verapamil, diltiazem or nicardipine, but inhibition by Ni2+ and SK&F 96365, further identify the channel with receptor-mediated Ca2+ entry in intact cells. Inhibition of the channel by cyclic-GMP-dependent protein kinase may contribute to vascular relaxation in response to nitrovasodilators

    Vasoconstrictor agonists activate G-protein-dependent receptor-operated calcium channels in pig aortic microsomes.

    No full text
    Receptor-operated Ca2+ channels were characterized by their ability to decrease steady-state ATP-dependent Ca2+ accumulation into pig aortic microsomes. The vasoconstrictor agents noradrenaline, angiotensin II and adenosine 5'-[alpha beta-methylene]triphosphate (pp[CH2]pA) all decreased Ca2+ accumulation only when sonicated into vesicles (to allow access to receptor sites) and in the presence of guanosine 5'-[beta gamma-imido]triphosphate to activate transducing G-proteins. The effect of noradrenaline was inhibited by the alpha 2 antagonist yohimbine, but not by the alpha 1 antagonist prazosin. The effect of none of the agonists was reversed by diltiazem. SK&F 96365 (an inhibitor of receptor-mediated Ca2+ influx into intact cells) reversed the effect of noradrenaline, but not that of pp[CH2]pA, which suggests that at least two receptor-operated channels may be present in this preparation

    Detection of human red blood cell-bound nitric oxide

    No full text
    Major disparities in reported levels of basal human nitric oxide metabolites have resulted in a recent literature focusing almost exclusively on methods. We chose to analyze triiodide chemiluminescence, drawn by the prospect of identifying why the most commonly employed assay in nitric oxide biology typically yielded lower metabolite values, compared with several other techniques. We found that the sensitivity of triiodide was greatly affected by the auto-capture of nitric oxide by deoxygenated cell-free heme in the reaction chamber. Potential contaminants and signal losses were also associated with standard sample purification procedures and the chemistry involved in nitrite removal. To inhibit heme nitric oxide auto-capture, we added potassium ferricyanide to the triiodide reagent, reasoning this would provide a more complete detection of any liberated nitric oxide. From human venous blood samples, we established nitric oxide levels ranging from 0.000178 to 0.00024 mol nitric oxide/mol hemoglobin. We went on to find significantly elevated nitric oxide levels in venous blood taken from diabetic patients in comparison to healthy controls (

    Chilling-related cell damage of apple (Malus x domestica Borkh.) fruit cortical tissue impacts antioxidant, lipid and phenolic metabolism

    No full text
    'Soggy breakdown' (SB) is an internal flesh disorder of 'Honeycrisp' apple (Malus × domestica Borkh.) fruit that occurs during low temperature storage. The disorder is a chilling injury (CI) in which visible symptoms typically appear after several weeks of storage, but information about the underlying metabolism associated with its induction and development is lacking. The metabolic profile of flesh tissue from wholly healthy fruit and brown and healthy tissues from fruit with SB was characterized using gas chromatography-mass spectrometry (GC-MS) and liquid chromatograph-mass spectrometry (LC-MS). Partial least squares discriminant analysis (PLS-DA) and correlation networks revealed correlation among ester volatile compounds by composition and differences in phytosterol, phenolic and putative triacylglycerides (TAGs) metabolism among the tissues. anova-simultaneous component analysis (ASCA) was used to test the significance of metabolic changes linked with tissue health status. ASCA-significant components included antioxidant compounds, TAGs, and phytosterol conjugates. Relative to entirely healthy tissues, elevated metabolite levels in symptomatic tissue included γ-amino butyric acid, glycerol, sitosteryl (6'-O-palmitoyl) β-d-glucoside and sitosteryl (6'-O-stearate) β-d-glucoside, and TAGs containing combinations of 16:0, 18:3, 18:2 and 18:1 fatty acids. Reduced metabolite levels in SB tissue included 5-caffeoyl quinate, β-carotene, catechin, epicatechin, α-tocopherol, violaxanthin and sitosteryl β-d glucoside. Pathway analysis indicated aspects of primary metabolism differed according to tissue condition, although differences in metabolites involved were more subtle than those of some secondary metabolites. The results implicate oxidative stress and membrane disruption processes in SB development and constitute a diagnostic metabolic profile for the disorder.status: publishe
    • …
    corecore