509 research outputs found

    A Comparison of the Ovulation Method With the CUE Ovulation Predictor in Determining the Fertile Period

    Get PDF
    The purpose of this study was to compare the CUE Ovulation Predictor with the ovulation method in determining the fertile period. Eleven regularly ovulating women measured their salivary and vaginal electrical resistance (ER) with the CUE, observed their cervical-vaginal mucus, and measured their urine for a luteinizing hormone (LH) surge on a daily basis. Data from 21 menstrual cycles showed no statistical difference (T= 0.33, p= 0.63) between the CUE fertile period, which ranged from 5 to 10 days (mean = 6.7 days, SD = 1.6), and the fertile period of the ovulation method, which ranged from 4 to 9 days (mean = 6.5 days, SD = 2.0). The CUE has potential as an adjunctive device in the learning and use of natural family planning methods

    Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and Simulation

    Get PDF
    We investigate the effective conductivity (σe\sigma_e) of a class of amorphous media defined by the level-cut of a Gaussian random field. The three point solid-solid correlation function is derived and utilised in the evaluation of the Beran-Milton bounds. Simulations are used to calculate σe\sigma_e for a variety of fields and volume fractions at several different conductivity contrasts. Relatively large differences in σe\sigma_e are observed between the Gaussian media and the identical overlapping sphere model used previously as a `model' amorphous medium. In contrast σe\sigma_e shows little variability between different Gaussian media.Comment: 15 pages, 14 figure

    Probing Pseudogap by Josephson Tunneling

    Full text link
    We propose here an experiment aimed to determine whether there are superconducting pairing fluctuations in the pseudogap regime of the high-TcT_c materials. In the experimental setup, two samples above TcT_c are brought into contact at a single point and the differential AC conductivity in the presence of a constant applied bias voltage between the samples, VV, should be measured. We argue the the pairing fluctuations will produce randomly fluctuating Josephson current with zero mean, however the current-current correlator will have a characteristic frequency given by Josephson frequency ωJ=2eV/\omega_J = 2 e V /\hbar. We predict that the differential AC conductivity should have a peak at the Josephson frequency with the width determined by the phase fluctuations time.Comment: 4 pages, 2 eps figure

    Low-Frequency Crossover of the Fractional Power-Law Conductivity in SrRuO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    We combine the results of terahertz time-domain spectroscopy with far-infrared transmission and reflectivity to obtain the conductivity of SrRuO 3 over an unprecedented continuous range in frequency, allowing us to characterize the approach to zero frequency as a function of temperature. We show that the conductivity follows a simple phenomenological form, with an analytic structure fundamentally different from that predicted by the standard theory of metals

    Magnetic field induced charge and spin instabilities in cuprate superconductors

    Get PDF
    A d-wave superconductor, subject to strong phase fluctuations, is known to suffer an antiferromagnetic instability closely related to the chiral symmetry breaking in (2+1)-dimensional quantum electrodynamics (QED3). On the basis of this idea we formulate a "QED3 in a box" theory of local instabilities of a d-wave superconductor in the vicinity of a single pinned vortex undergoing quantum fluctuations around its equilibrium position. As a generic outcome we find an incommensurate 2D spin density wave forming in the neighborhood of a vortex with a concomitant "checkerboard" pattern in the local electronic density of states, in agreement with recent neutron scattering and tunneling spectroscopy measurements.Comment: 4 pages REVTeX + 2 PostScript figures included in text. Version to appear in PRL (minor stylistic changes, references updated). For related work and info visit http://www.physics.ubc.ca/~fran

    Algebraic Fermi liquid from phase fluctuations: "topological" fermions, vortex "berryons" and QED3 theory of cuprate superconductors

    Full text link
    Within the phase fluctuation model for the pseudogap state of cuprate superconductors we identify a novel statistical "Berry phase" interaction between the nodal quasiparticles and fluctuating vortices. The effective action describing this model assumes the form of an anisotropic Euclidean quantum electrodynamics in (2+1) dimensions (QED_3) and naturally generates the marginal Fermi liquid behavior for its fermionic excitations. The doping axis in the x-T phase diagram emerges as a quantum critical line which regulates low energy fermiology. We examine the merits of our theory in light of available experiments.Comment: 5 pages REVTeX + 2 PostScript Figures. Final version to appear in PR

    Charge Ordering Fluctuation and Optical Pseudogap in La1x_{1-x}Cax_{x}MnO3_{3}

    Full text link
    Optical spectroscopy was used to investigate the optical gap (2Δ\Delta ) due to charge ordering (CO) and related pseudogap developments with x and temperature (T) in La1x_{1-x}Cax_{x}MnO3_{3} (0.48 <= x <= 0.67). Surprisingly, we found 2Δ\Delta /k_{B}T_{CO} is as large as 30 for x ~0.5, and decreases rapidly with increasing x. Simultaneously, the optical pseudogap, possibly starting from T^* far above T_{CO} becomes drastically enhanced near x=0.5, producing non-BCS T-dependence of 2Δ\Delta with the large magnitude far above T_{CO}, and systematic increase of T^* for x~0.5. These results unequivocally indicate systematically-enhanced CO correlation when x approaches 0.5 even though T_{CO} decreases.Comment: 5 pages, 4 figures embedded, submitted to Phys. Rev. Let

    Antiferromagnetism from phase disordering of a d-wave superconductor

    Full text link
    The unbinding of vortex defects in the superconducting condensate with d-wave symmetry at T=0 is shown to lead to the insulator with incommensurate spin-density-wave order. The transition is similar to the spontaneous generation of the "chiral" mass in the three dimensional quantum electrodynamics, at which the global chiral symmetry one can define in the superconducting state is spontaneously broken. Other symmetry related states and possible relations to recent experiments on uderdoped cuprates are briefly discussed.Comment: RevTex, 4 pages, one ps figure; comments on confinement in the SDW added, references updated; final versio

    The superfluid density in cuprate high-Tc superconductors - a new paradigm

    Full text link
    The doping dependence of the superfluid density, r_s, of high-Tc superconductors is usually considered in the context of the Uemura relation, namely Tc proportional to rs, which is generally assumed to apply in the underdoped regime. We show that a modified plot of Tc/Do versus rs, where Do is the maximum d-wave gap at T=0, exhibits universal features that point to an alternative interpretation of the underlying physics. In the underdoped region this plot exhibits the canonical negative curvature expected when a ground-state correlation competes with superconductivity (SC) by opening up a gap in the normal-state DOS. In particular rs is suppressed much faster than Tc/Do or indeed Tc. The pseudogap is found to strongly modify the SC ground state.Comment: 9 pages, 5 figures, submitted Phys. Rev. Let
    corecore