19 research outputs found

    Reno-protective effects of renin–angiotensin system blockade in type 2 diabetic patients: a systematic review and network meta-analysis

    Get PDF
    AIMS/HYPOTHESIS: This meta-analysis aimed to compare the renal outcomes between ACE inhibitor (ACEI)/angiotensin II receptor blocker (ARB) and other antihypertensive drugs or placebo in type 2 diabetes. METHODS: Publications were identified from Medline and Embase up to July 2011. Only randomised controlled trials comparing ACEI/ARB monotherapy with other active drugs or placebo were eligible. The outcome of end-stage renal disease, doubling of serum creatinine, microvascular complications, microalbuminuria, macroalbuminuria and albuminuria regression were extracted. Risk ratios were pooled using a random-effects model if heterogeneity was present; a fixed-effects model was used in the absence of heterogeneity. RESULTS: Of 673 studies identified, 28 were eligible (n = 13-4,912). In direct meta-analysis, ACEI/ARB had significantly lower risk of serum creatinine doubling (pooled RR = 0.66 [95% CI 0.52, 0.83]), macroalbuminuria (pooled RR = 0.70 [95% CI 0.50, 1.00]) and albuminuria regression (pooled RR 1.16 [95% CI 1.00, 1.39]) than other antihypertensive drugs, mainly calcium channel blockers (CCBs). Although the risks of end-stage renal disease and microalbuminuria were lower in the ACEI/ARB group (pooled RR 0.82 [95% CI 0.64, 1.05] and 0.84 [95% CI 0.61, 1.15], respectively), the differences were not statistically significant. The ACEI/ARB benefit over placebo was significant for all outcomes except microalbuminuria. A network meta-analysis detected significant treatment effects across all outcomes for both active drugs and placebo comparisons. CONCLUSIONS/INTERPRETATION: Our review suggests a consistent reno-protective effect of ACEI/ARB over other antihypertensive drugs, mainly CCBs, and placebo in type 2 diabetes. The lack of any differences in BP decrease between ACEI/ARB and active comparators suggest this benefit is not due simply to the antihypertensive effect

    Cardiovascular and renal outcomes of renin-angiotensin system blockade in adult patients with diabetes mellitus: a systematic review with network meta-analyses

    Get PDF
    Medications aimed at inhibiting the renin-angiotensin system (RAS) have been used extensively for preventing cardiovascular and renal complications in patients with diabetes, but data that compare their clinical effectiveness are limited. We aimed to compare the effects of classes of RAS blockers on cardiovascular and renal outcomes in adults with diabetes

    Treatment effects of renin-angiotensin aldosterone system blockade on kidney failure and mortality in chronic kidney disease patients

    No full text
    Abstract Background Chronic kidney disease (CKD) is a leading cause of death before and after onset of end-stage renal disease (ESRD). Knowing treatments that can delay disease progression will lead to reduced mortality. We therefore aimed to estimate the effectiveness of renin angiotensin aldosterone system (RAAS) blockade on CKD progression. Methods We conducted a retrospective CKD cohort at Ubon Ratchathani province, Thailand from 1997 to 2011. ESRD was defined as estimated glomerular filtration rate (eGFR) 1 year (RAAS2). An augmented inverse-probability weighting (AIPW) method was used to estimate potential-outcome mean (POM) and average treatment-effect (ATE). Multi-logit and Poisson regressions were used for treatment and outcome models, respectively. Analyses were stratified by ESRD, death before/after ESRD for diabetic and non-diabetic groups. STATA 14.0 was used for statistical analyses. Results Among 15,032 diabetic patients, 2346 (15.6%), 2351 (18.5%), and 1607 (68.5%) developed ESRD, died before ESRD, and died after ESRD, respectively. Only RAAS2 effect was significant on ESRD, death before and after ESRD. The ESRD rates were 12.9%, versus 20.0% for RAAS2 and non-RAAS, respectively, resulted in significant risk differences (RD) of −7.2% (95% CI: -8.8%, −5.5%), and a numbers needed-to-treat (NNT) of 14. Death rates before ESRD for these corresponding groups were 14.4% (12.9%, 15.9%) and 19.6% (18.7%, 20.4%) with a NNT of 19. Death rates after ESRD in RAAS2 was lower than non-RASS group (i.e., 62.8% (55.5%, 68.9%) versus 68.1% (65.9%, 70.4%)) but this was not significant. RAAS2 effects on ESRD and death before ESRD were persistently significant in non-diabetic patients (n = 17,074) but not for death after ESRD with the NNT of about 15 and 16 respectively. Conclusions Receiving RAAS blockade for 1 year or longer could prevent both CKD progression to ESRD and premature mortality
    corecore