130 research outputs found

    One-pot homologation of boronic acids : a platform for diversity-oriented synthesis

    Get PDF
    Formal homologation of sp2-hybridized boronic acids is achieved via cross-coupling of boronic acids with conjunctive haloaryl BMIDA components in the presence of a suitably balanced basic phase. The utility of this approach to provide a platform for diversity-oriented synthesis in discovery medicinal chemistry is demonstrated in the context of the synthesis of a series of analogues of a BET bromodomain inhibitor

    Human Cellular Immune Response to the Saliva of Phlebotomus papatasi Is Mediated by IL-10-Producing CD8+ T Cells and Th1-Polarized CD4+ Lymphocytes

    Get PDF
    Cutaneous leishmaniasis affects millions of people worldwide and is caused by protozoa of the genus Leishmania. The parasite is transmitted during sand fly bites. While probing the skin for a blood meal, vectors salivate into the host's skin. Sand fly saliva contains several components that increase hemorrhage and interfere with the host's inflammatory response. Data obtained in mice originally indicate that immunization against saliva protected from leishmaniasis supporting possibility that leishmaniasis could be prevented by a vaccine based on sand fly saliva. Herein we investigated the nature and the importance of the cellular immune response developed against sand fly saliva by individuals at risk of cutaneous leishmaniasis due to Leishmania major. We demonstrated that the immunity against saliva is dominated by the activation of lymphocytes producing a suppressive cytokine called IL-10. These data may preclude the protective effect of sand fly saliva pre-exposure in humans. Further experiments revealed that the production of IL-10 masked the presence of a second kind of lymphocytes producing IFN-γ, a rather protective cytokine. The latter finding highlights the importance of the identification of the proteins activating the latter lymphocytes in order to develop vaccines based on selected proteins from the saliva of sand flies

    Acute immune signatures and their legacies in severe acute respiratory syndrome coronavirus-2 infected cancer patients

    Get PDF
    Given the immune system’s importance for cancer surveillance and treatment, we have investigated how it may be affected by SARS-CoV-2 infection of cancer patients. Across some heterogeneity in tumor type, stage, and treatment, virus-exposed solid cancer patients display a dominant impact of SARS-CoV-2, apparent from the resemblance of their immune signatures to those for COVID-19+ non-cancer patients. This is not the case for hematological malignancies, with virus-exposed patients collectively displaying heterogeneous humoral responses, an exhausted T cell phenotype and a high prevalence of prolonged virus shedding. Furthermore, while recovered solid cancer patients’ immunophenotypes resemble those of nonvirus-exposed cancer patients, recovered hematological cancer patients display distinct, lingering immunological legacies. Thus, while solid cancer patients, including those with advanced disease, seem no more at risk of SARS-CoV-2-associated immune dysregulation than the general population, hematological cancer patients show complex immunological consequences of SARS-CoV-2 exposure that might usefully inform their care

    E. coli promotes human Vγ9Vδ2 T cell transition from cytokine-producing bactericidal effectors to professional phagocytic killers in a TCR-dependent manner

    Get PDF
    γδT cells provide immune-surveillance and host defense against infection and cancer. Surprisingly, functional details of γδT cell antimicrobial immunity to infection remain largely unexplored. Limited data suggests that γδT cells can phagocytose particles and act as professional antigen-presenting cells (pAPC). These potential functions, however, remain controversial. To better understand γδT cell-bacterial interactions, an ex vivo co-culture model of human peripheral blood mononuclear cell (PBMC) responses to Escherichia coli was employed. Vγ9Vδ2 cells underwent rapid T cell receptor (TCR)-dependent proliferation and functional transition from cytotoxic, inflammatory cytokine immunity, to cell expansion with diminished cytokine but increased costimulatory molecule expression, and capacity for professional phagocytosis. Phagocytosis was augmented by IgG opsonization, and inhibited by TCR-blockade, suggesting a licensing interaction involving the TCR and FcγR. Vγ9Vδ2 cells displayed potent cytotoxicity through TCR-dependent and independent mechanisms. We conclude that γδT cells transition from early inflammatory cytotoxic killers to myeloid-like APC in response to infectious stimuli

    Jugoslavija u međunarodnoj trgovini ribom, ribljim proizvodima i prerađevinama

    Get PDF
    Sulfonamides are profoundly important in pharmaceutical design. C–N cross-coupling of sulfonamides is an effective method for fragment coupling and structure–activity relationship (SAR) mining. However, cross-coupling of the important <i>N</i>-arylsulfonamide pharmacophore has been notably unsuccessful. Here, we present a solution to this problem via oxidative Cu-catalysis (Chan–Lam cross-coupling). Mechanistic insight has allowed the discovery and refinement of an effective cationic Cu catalyst to facilitate the practical and scalable Chan–Lam <i>N</i>-arylation of primary and secondary <i>N</i>-arylsulfonamides at room temperature. We also demonstrate utility in the large scale synthesis of a key intermediate to a clinical hepatitis C virus treatment

    Epithelial damage and tissue γδ T cells promote a unique tumor-protective IgE response

    Get PDF
    IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development

    Clonal selection in the human Vδ1 T cell repertoire indicates γδ TCR-dependent adaptive immune surveillance

    Get PDF
    γδ T cells are considered to be innate-like lymphocytes that respond rapidly to stress without clonal selection and differentiation. Here we use next-generation sequencing to probe how this paradigm relates to human Vδ2neg T cells, implicated in responses to viral infection and cancer. The prevalent Vδ1 T cell receptor (TCR) repertoire is private and initially unfocused in cord blood, typically becoming strongly focused on a few high-frequency clonotypes by adulthood. Clonal expansions have differentiated from a naive to effector phenotype associated with CD27 downregulation, retaining proliferative capacity and TCR sensitivity, displaying increased cytotoxic markers and altered homing capabilities, and remaining relatively stable over time. Contrastingly, Vδ2+ T cells express semi-invariant TCRs, which are present at birth and shared between individuals. Human Vδ1+ T cells have therefore evolved a distinct biology from the Vδ2+ subset, involving a central, personalized role for the γδ TCR in directing a highly adaptive yet unconventional form of immune surveillance

    PLoS Pathog

    Get PDF
    Cytomegalovirus (CMV) is a leading infectious cause of morbidity in immune-compromised patients. γδ T cells have been involved in the response to CMV but their role in protection has not been firmly established and their dependency on other lymphocytes has not been addressed. Using C57BL/6 αβ and/or γδ T cell-deficient mice, we here show that γδ T cells are as competent as αβ T cells to protect mice from CMV-induced death. γδ T cell-mediated protection involved control of viral load and prevented organ damage. γδ T cell recovery by bone marrow transplant or adoptive transfer experiments rescued CD3ε-/- mice from CMV-induced death confirming the protective antiviral role of γδ T cells. As observed in humans, different γδ T cell subsets were induced upon CMV challenge, which differentiated into effector memory cells. This response was observed in the liver and lungs and implicated both CD27+ and CD27- γδ T cells. NK cells were the largely preponderant producers of IFNγ and cytotoxic granules throughout the infection, suggesting that the protective role of γδ T cells did not principally rely on either of these two functions. Finally, γδ T cells were strikingly sufficient to fully protect Rag-/-γc-/- mice from death, demonstrating that they can act in the absence of B and NK cells. Altogether our results uncover an autonomous protective antiviral function of γδ T cells, and open new perspectives for the characterization of a non classical mode of action which should foster the design of new γδ T cell based therapies, especially useful in αβ T cell compromised patients

    Intestinal intraepithelial lymphocyte-enterocyte crosstalk regulates production of bactericidal angiogenin 4 by Paneth cells upon microbial challenge

    Get PDF
    Antimicrobial proteins influence intestinal microbial ecology and limit proliferation of pathogens, yet the regulation of their expression has only been partially elucidated. Here, we have identified a putative pathway involving epithelial cells and intestinal intraepithelial lymphocytes (iIELs) that leads to antimicrobial protein (AMP) production by Paneth cells. Mice lacking γδ iIELs (TCRδ(-/-)) express significantly reduced levels of the AMP angiogenin 4 (Ang4). These mice were also unable to up-regulate Ang4 production following oral challenge by Salmonella, leading to higher levels of mucosal invasion compared to their wild type counterparts during the first 2 hours post-challenge. The transfer of γδ iIELs from wild type (WT) mice to TCRδ(-/-) mice restored Ang4 production and Salmonella invasion levels were reduced to those obtained in WT mice. The ability to restore Ang4 production in TCRδ(-/-) mice was shown to be restricted to γδ iIELs expressing Vγ7-encoded TCRs. Using a novel intestinal crypt co-culture system we identified a putative pathway of Ang4 production initiated by exposure to Salmonella, intestinal commensals or microbial antigens that induced intestinal epithelial cells to produce cytokines including IL‑23 in a TLR-mediated manner. Exposure of TCR-Vγ7(+) γδ iIELs to IL-23 promoted IL‑22 production, which triggered Paneth cells to secrete Ang4. These findings identify a novel role for γδ iIELs in mucosal defence through sensing immediate epithelial cell cytokine responses and influencing AMP production. This in turn can contribute to the maintenance of intestinal microbial homeostasis and epithelial barrier function, and limit pathogen invasion
    corecore