277 research outputs found

    Accuracy of magnetic energy computations

    Full text link
    For magnetically driven events, the magnetic energy of the system is the prime energy reservoir that fuels the dynamical evolution. In the solar context, the free energy is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. A trustworthy estimation of the magnetic energy is therefore needed in three-dimensional models of the solar atmosphere, eg in coronal fields reconstructions or numerical simulations. The expression of the energy of a system as the sum of its potential energy and its free energy (Thomson's theorem) is strictly valid when the magnetic field is exactly solenoidal. For numerical realizations on a discrete grid, this property may be only approximately fulfilled. We show that the imperfect solenoidality induces terms in the energy that can lead to misinterpreting the amount of free energy present in a magnetic configuration. We consider a decomposition of the energy in solenoidal and nonsolenoidal parts which allows the unambiguous estimation of the nonsolenoidal contribution to the energy. We apply this decomposition to six typical cases broadly used in solar physics. We quantify to what extent the Thomson theorem is not satisfied when approximately solenoidal fields are used. The quantified errors on energy vary from negligible to significant errors, depending on the extent of the nonsolenoidal component. We identify the main source of errors and analyze the implications of adding a variable amount of divergence to various solenoidal fields. Finally, we present pathological unphysical situations where the estimated free energy would appear to be negative, as found in some previous works, and we identify the source of this error to be the presence of a finite divergence. We provide a method of quantifying the effect of a finite divergence in numerical fields, together with detailed diagnostics of its sources

    First observational application of a connectivity--based helicity flux density

    Full text link
    Measuring the magnetic helicity distribution in the solar corona can help in understanding the trigger of solar eruptive events because magnetic helicity is believed to play a key role in solar activity due to its conservation property. A new method for computing the photospheric distribution of the helicity flux was recently developed. This method takes into account the magnetic field connectivity whereas previous methods were based on photospheric signatures only. This novel method maps the true injection of magnetic helicity in active regions. We applied this method for the first time to an observed active region, NOAA 11158, which was the source of intense flaring activity. We used high-resolution vector magnetograms from the SDO/HMI instrument to compute the photospheric flux transport velocities and to perform a nonlinear force-free magnetic field extrapolation. We determined and compared the magnetic helicity flux distribution using a purely photospheric as well as a connectivity-based method. While the new connectivity-based method confirms the mixed pattern of the helicity flux in NOAA 11158, it also reveals a different, and more correct, distribution of the helicity injection. This distribution can be important for explaining the likelihood of an eruption from the active region. The connectivity-based approach is a robust method for computing the magnetic helicity flux, which can be used to study the link between magnetic helicity and eruptivity of observed active regions.Comment: 4 pages, 3 figures; published online in A&A 555, L6 (2013

    Viral delivery of antioxidant genes as a therapeutic strategy in experimental models of amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder with no effective treatment to date. Despite its multi-factorial aetiology, oxidative stress is hypothesized to be one of the key pathogenic mechanisms. It is thus proposed that manipulation of the expression of antioxidant genes that are downregulated in the presence of mutant SOD1 may serve as a therapeutic strategy for motor neuronal protection. Lentiviral vectors expressing either PRDX3 or NRF2 genes were tested in the motor neuronal-like NSC34 cell line, and in the ALS tissue culture model, NSC34 cells expressing the human SOD1(G93A) mutation. The NSC34 SOD1(G93A) cells overexpressing either PRDX3 or NRF2 showed a significant decrease in endogenous oxidation stress levels by 40 and 50% respectively compared with controls, whereas cell survival was increased by 30% in both cases. The neuroprotective potential of those two genes was further investigated in vivo in the SOD1(G93A) ALS mouse model, by administering intramuscular injections of adenoassociated virus serotype 6 (AAV6) expressing either of the target genes at a presymptomatic stage. Despite the absence of a significant effect in survival, disease onset or progression, which can be explained by the inefficient viral delivery, the promising in vitro data suggest that a more widespread CNS delivery is needed

    The 2013 February 17 sunquake in the context of the active region's magnetic field configuration

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region's magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope's instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake

    Additivity of relative magnetic helicity in finite volumes

    Get PDF
    CONTEXT: Relative magnetic helicity is conserved by magneto-hydrodynamic evolution even in the presence of moderate resistivity. For that reason, it is often invoked as the most relevant constraint on the dynamical evolution of plasmas in complex systems, such as solar and stellar dynamos, photospheric flux emergence, solar eruptions, and relaxation processes in laboratory plasmas. However, such studies often indirectly imply that relative magnetic helicity in a given spatial domain can be algebraically split into the helicity contributions of the composing subvolumes, in other words that it is an additive quantity. A limited number of very specific applications have shown that this is not the case. AIMS: Progress in understanding the nonadditivity of relative magnetic helicity requires removal of restrictive assumptions in favor of a general formalism that can be used in both theoretical investigations and numerical applications. METHODS: We derive the analytical gauge-invariant expression for the partition of relative magnetic helicity between contiguous finite volumes, without any assumptions on either the shape of the volumes and interface, or the employed gauge. RESULTS: We prove the nonadditivity of relative magnetic helicity in finite volumes in the most general, gauge-invariant formalism, and verify this numerically. We adopt more restrictive assumptions to derive known specific approximations, which yields a unified view of the additivity issue. As an example, the case of a flux rope embedded in a potential field shows that the nonadditivity term in the partition equation is, in general, non-negligible. CONCLUSIONS: The nonadditivity of relative magnetic helicity can potentially be a serious impediment to the application of relative helicity conservation as a constraint on the complex dynamics of magnetized plasmas. The relative helicity partition formula can be applied to numerical simulations to precisely quantify the effect of nonadditivity on global helicity budgets of complex physical processes

    Disambiguation of Vector Magnetograms by Stereoscopic Observations from the Solar Orbiter/Polarimetric and Helioseismic Imager (PHI) and the Solar Dynamic Observatory (SDO)/Helioseismic and Magnetic Imager (HMI)

    Get PDF
    Spectropolarimetric reconstructions of the photospheric vector magnetic field are intrinsically limited by the 180∘ ambiguity in the orientation of the transverse component. The successful launch and operation of Solar Orbiter have made the removal of the 180∘ ambiguity possible using solely observations obtained from two different vantage points. While the exploitation of such a possibility is straightforward in principle, it is less so in practice, and it is therefore important to assess the accuracy and limitations as a function of both the spacecrafts’ orbits and measurement principles. In this work, we present a stereoscopic disambiguation method (SDM) and discuss thorough testing of its accuracy in applications to modeled active regions and quiet-Sun observations. In the first series of tests, we employ magnetograms extracted from three different numerical simulations as test fields and model observations of the magnetograms from different angles and distances. In these more idealized tests, SDM is proven to reach a 100% disambiguation accuracy when applied to moderately-to-well resolved fields. In such favorable conditions, the accuracy is almost independent of the relative position of the spacecraft with the obvious exceptions of configurations where the spacecraft are within a few degrees of co-alignment or quadrature. Even in the case of disambiguation of quiet-Sun magnetograms with significant under-resolved spatial scales, SDM provides an accuracy between 82% and 98%, depending on the field strength. The accuracy of SDM is found to be mostly sensitive to the variable spatial resolution of Solar Orbiter in its highly elliptic orbit, as well as to the intrinsic spatial scale of the observed field. Additionally, we provide an example of the expected accuracy as a function of time that can be used to optimally place remote-sensing observing windows during Solar Orbiter observation planning. Finally, as a more realistic test, we consider magnetograms that are obtained using a radiative-transfer inversion code and the SO/PHI Software siMulator (SOPHISM) applied to a 3D-simulation of a pore, and we present a preliminary discussion of the effect of the viewing angle on the observed field. In this more realistic test of the application of SDM, the method is able to successfully remove the ambiguity in strong-field areas

    The Magnetic Environment of a Stealth Coronal Mass Ejection

    Get PDF
    Interest in stealth coronal mass ejections (CMEs) is increasing due to their relatively high occurrence rate and space weather impact. However, typical CME signatures such as extreme-ultraviolet dimmings and post-eruptive arcades are hard to identify and require extensive image processing techniques. These weak observational signatures mean that little is currently understood about the physics of these events. We present an extensive study of the magnetic field configuration in which the stealth CME of 2011 March 3 occurred. Three distinct episodes of flare ribbon formation are observed in the stealth CME source active region (AR). Two occurred prior to the eruption and suggest the occurrence of magnetic reconnection that builds the structure that will become eruptive. The third occurs in a time close to the eruption of a cavity that is observed in STEREO-B 171 Å data; this subsequently becomes part of the propagating CME observed in coronagraph data. We use both local (Cartesian) and global (spherical) models of the coronal magnetic field, which are complemented and verified by the observational analysis. We find evidence of a coronal null point, with field lines computed from its neighborhood connecting the stealth CME source region to two ARs in the northern hemisphere. We conclude that reconnection at the null point aids the eruption of the stealth CME by removing the field that acted to stabilize the preeruptive structure. This stealth CME, despite its weak signatures, has the main characteristics of other CMEs, and its eruption is driven by similar mechanisms

    Solar Physics

    Get PDF
    Abstract Relative magnetic helicity, as a conserved quantity of ideal magnetohydrodynamics, has been highlighted as an important quantity to study in plasma physics. Due to its non-local nature, its estimation is not straightforward in both observational and numerical data. In the present study we derive expressions for the practical computation of the gauge-independent relative magnetic helicity in three-dimensional finite domains. The derived expressions are easy to implement and rapid to compute. They are derived in Cartesian coordinates, but can be easily written in other coordinate systems. We apply our method to a numerical model of a force-free equilibrium containing a flux rope, and compare the results with those obtained employing known half-space equations. We find that our method requires a much smaller volume than half-space expressions to derive the full helicity content. Additionally, we prove that values of relative magnetic helicity of different magnetic fields can be compared with each other in the same sense as free-energy values can. Therefore, relative magnetic helicity can be meaningfully and directly compared between different datasets, such as those from different active regions, but also the same dataset at different times. Typical applications of our formulae include the helicity computation in threedimensional models of the solar atmosphere, e.g. coronal-field reconstructions by force-free extrapolation and discretized magnetic fields of numerical simulations

    Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event

    Get PDF
    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.Comment: 12 pages, 12 figure

    Primary familial brain calcification linked to deletion of 5' noncoding region of SLC20A2

    Get PDF
    OBJECTIVES: Primary familial brain calcification (PFBC) is a rare neurological disease often inherited as a dominant trait. Mutations in four genes (SLC20A2, PDGFB, PDGFRB, and XPR1) have been reported in patients with PFBC. Of these, point mutations or small deletions in SLC20A2 are most common. Thus far, only one large deletion covering entire SLC20A2 and several smaller, exonic deletions of SLC20A2 have been reported. The aim of this study was to identify the causative gene defect in a Finnish PFBC family with three affected patients. MATERIALS AND METHODS: A Finnish family with three PFBC patients and five unaffected subjects was studied. Sanger sequencing was used to exclude mutations in the coding and splice site regions of SLC20A2, PDGFRB, and PDGFB. Whole-exome (WES) and whole-genome sequencing (WGS) were performed to identify the causative mutation. A SNP array was used in segregation analysis. RESULTS: Copy number analysis of the WGS data revealed a heterozygous deletion of ~578 kb on chromosome 8. The deletion removes the 5' UTR region, the noncoding exon 1 and the putative promoter region of SLC20A2 as well as the coding regions of six other genes. CONCLUSIONS: Our results support haploinsufficiency of SLC20A2 as a pathogenetic mechanism in PFBC. Analysis of copy number variations (CNVs) is emerging as a crucial step in the molecular genetic diagnostics of PFBC, and it should not be limited to coding regions, as causative variants may reside in the noncoding parts of known disease-associated genes
    • 

    corecore