763 research outputs found

    Loss of antibunching

    Full text link
    We describe some of the main external mechanisms that lead to a loss of antibunching, i.e., that spoil the character of a given quantum light to deliver its photons separated from each other. Namely, we consider contamination by noise, a time jitter in the photon detection, and the effect of frequency filtering (or detection with finite bandwidth). The formalism to describe time jitter is derived and connected to the already existing one for frequency filtering. The emission from a two-level system under both incoherent and coherent driving is taken as a particular case of special interest. The coherent case is further separated into its vanishing- (Heitler) and high- (Mollow) driving regimes. We provide analytical solutions which, in the case of filtering, reveal an unsuspected structure in the transitions from perfect antibunching to thermal (incoherent case) or uncorrelated (coherent case) emission. The experimental observations of these basic and fundamental transitions would provide additional compelling evidence of the correctness and importance of the theory of frequency-resolved photon correlation

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Impact of detuning and dephasing on a laser-corrected subnatural-linewidth single-photon source

    Get PDF
    The elastic scattering peak of a resonantly driven two-level system has been argued to provide narrow-linewidth antibunched photons. Although independent measurements of spectral width on the one hand and antibunching, on the other hand, do seem to show that this is the case, a joint measurement reveals that only one or the other of these attributes can be realised in the direct emission. We discuss a scheme which interferes the emission with a laser to produce simultaneously single photons of subnatural linewidth. In particular, we consider the effect of dephasing and of the detuning between the driving laser and/or the detector with the emitter. We find that our scheme brings such considerable improvement as compared to the standard schemes as to make it the best single-photon source in terms of all-order multi-photon suppression by several orders of magnitudes. While the scheme is particularly fragile to dephasing, its superiority holds even for subnatural-linewidth emission down to a third of the radiative lifetime
    corecore