1,141 research outputs found

    Exciting polaritons with quantum light

    Full text link
    We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theoretical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.Comment: 5 pages, 3 figure

    Quasichiral interactions between quantum emitters at the nanoscale

    Get PDF
    This is an accepted manuscript of an article published by American Physical Society in Physical Review Letters on 07/02/2019, available online: https://doi.org/10.1103/PhysRevLett.122.057401 The accepted version of the publication may differ from the final published version.We present a combined classical and quantum electrodynamics description of the coupling between two circularly polarized quantum emitters held above a metal surface supporting surface plasmons. Depending on their position and their natural frequency, the emitter-emitter interactions evolve from being reciprocal to nonreciprocal, which makes the system a highly tunable platform for chiral coupling at the nanoscale. By relaxing the stringent material and geometrical constraints for chirality, we explore the interplay between coherent and dissipative coupling mechanisms in the system. Thus, we reveal a quasichiral regime in which its quantum optical properties are governed by its subradiant state, giving rise to extremely sharp spectral features and strong photon correlations

    Loss of antibunching

    Full text link
    We describe some of the main external mechanisms that lead to a loss of antibunching, i.e., that spoil the character of a given quantum light to deliver its photons separated from each other. Namely, we consider contamination by noise, a time jitter in the photon detection, and the effect of frequency filtering (or detection with finite bandwidth). The formalism to describe time jitter is derived and connected to the already existing one for frequency filtering. The emission from a two-level system under both incoherent and coherent driving is taken as a particular case of special interest. The coherent case is further separated into its vanishing- (Heitler) and high- (Mollow) driving regimes. We provide analytical solutions which, in the case of filtering, reveal an unsuspected structure in the transitions from perfect antibunching to thermal (incoherent case) or uncorrelated (coherent case) emission. The experimental observations of these basic and fundamental transitions would provide additional compelling evidence of the correctness and importance of the theory of frequency-resolved photon correlation

    Ultrafast control of Rabi oscillations in a polariton condensate

    Get PDF
    We report the experimental observation and control of space and time-resolved light-matter Rabi oscillations in a microcavity. Our setup precision and the system coherence are so high that coherent control can be implemented with amplification or switching off of the oscillations and even erasing of the polariton density by optical pulses. The data is reproduced by a fundamental quantum optical model with excellent accuracy, providing new insights on the key components that rule the polariton dynamics.Comment: 5 pages, 3 figures, supplementary 7 pages, 4 figures. Supplementary videos: https://drive.google.com/folderview?id=0B0QCllnLqdyBNjlMLTdjZlNhbTQ&usp=sharin

    Impact of detuning and dephasing on a laser-corrected subnatural-linewidth single-photon source

    Get PDF
    The elastic scattering peak of a resonantly driven two-level system has been argued to provide narrow-linewidth antibunched photons. Although independent measurements of spectral width on the one hand and antibunching, on the other hand, do seem to show that this is the case, a joint measurement reveals that only one or the other of these attributes can be realised in the direct emission. We discuss a scheme which interferes the emission with a laser to produce simultaneously single photons of subnatural linewidth. In particular, we consider the effect of dephasing and of the detuning between the driving laser and/or the detector with the emitter. We find that our scheme brings such considerable improvement as compared to the standard schemes as to make it the best single-photon source in terms of all-order multi-photon suppression by several orders of magnitudes. While the scheme is particularly fragile to dephasing, its superiority holds even for subnatural-linewidth emission down to a third of the radiative lifetime
    corecore