4,124 research outputs found

    Modeling and Evaluating of Business Revenue Models under Different Product Life Cycles Using System Dynamics Simulation

    Get PDF
    Business revenue modelling is one of the important aspects of enterprise planning to create values for enterprises. In this study, we construct a system dynamics simulation model to evaluate various business revenue models applied to e-platforms. Machining tools industry is investigated as a case study. Products with different life cycles are examined as applying different business models. Computational experiments are conducted and results are discussed. Specific research issues/contributions of the study include: 1. To propose four effective business revenue models in such an industry. 2. To evaluate the proposed business revenue models as well as their advantages/disadvantages by a system dynamics simulation. 3. To address managerial implications of these business revenue models to the industry. As a conclusion to our research, we show that: (i) Firms with products under growth or mature stage of life cycle adopt/switch appropriate business revenue models conforming to their requirements in different stages and result in high performance outcomes than those remaining in a single business revenue model. (ii) Business revenue models represented by causal loops of system dynamics and examined by system simulation can capture not only steady states but transient states of business activities. By taking advantages of the proposed approach, managers can thus efficiently make right decisions for reducing time and cost

    Revisiting the Equivalence Problem for Finite Multitape Automata

    Full text link
    The decidability of determining equivalence of deterministic multitape automata (or transducers) was a longstanding open problem until it was resolved by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability yields a co_NP upper bound, but apparently not much more is known about the complexity of the problem. In this paper we give an alternative proof of decidability, which follows the basic strategy of Harju and Karhumaki but replaces their use of group theory with results on matrix algebras. From our proof we obtain a simple randomised algorithm for deciding language equivalence of deterministic multitape automata and, more generally, multiplicity equivalence of nondeterministic multitape automata. The algorithm involves only matrix exponentiation and runs in polynomial time for each fixed number of tapes. If the two input automata are inequivalent then the algorithm outputs a word on which they differ

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    Regular Expression Matching and Operational Semantics

    Full text link
    Many programming languages and tools, ranging from grep to the Java String library, contain regular expression matchers. Rather than first translating a regular expression into a deterministic finite automaton, such implementations typically match the regular expression on the fly. Thus they can be seen as virtual machines interpreting the regular expression much as if it were a program with some non-deterministic constructs such as the Kleene star. We formalize this implementation technique for regular expression matching using operational semantics. Specifically, we derive a series of abstract machines, moving from the abstract definition of matching to increasingly realistic machines. First a continuation is added to the operational semantics to describe what remains to be matched after the current expression. Next, we represent the expression as a data structure using pointers, which enables redundant searches to be eliminated via testing for pointer equality. From there, we arrive both at Thompson's lockstep construction and a machine that performs some operations in parallel, suitable for implementation on a large number of cores, such as a GPU. We formalize the parallel machine using process algebra and report some preliminary experiments with an implementation on a graphics processor using CUDA.Comment: In Proceedings SOS 2011, arXiv:1108.279

    Theory of resistor networks: The two-point resistance

    Full text link
    The resistance between arbitrary two nodes in a resistor network is obtained in terms of the eigenvalues and eigenfunctions of the Laplacian matrix associated with the network. Explicit formulas for two-point resistances are deduced for regular lattices in one, two, and three dimensions under various boundary conditions including that of a Moebius strip and a Klein bottle. The emphasis is on lattices of finite sizes. We also deduce summation and product identities which can be used to analyze large-size expansions of two-and-higher dimensional lattices.Comment: 30 pages, 5 figures now included; typos in Example 1 correcte

    The yellow European eel (Anguilla anguilla L.) may adopt a sedentary lifestyle in inland freshwaters

    Get PDF
    We analysed the movements of the growing yellow phase using a long-term mark–recapture programme on European eels in a small catchment (the Frémur, France). The results showed that of the yellow eels (>200 mm) recaptured, more than 90% were recaptured at the original marking site over a long period before the silvering metamorphosis and downstream migration. We conclude that yellow European eels >200 mm may adopt a sedentary lifestyle in freshwater area, especially in small catchment

    Influence of realistic parameters on state-of-the-art LWFA experiments

    Full text link
    We examine the influence of non-ideal plasma-density and non-Gaussian transverse laser-intensity profiles in the laser wakefield accelerator analytically and numerically. We find that the characteristic amplitude and scale length of longitudinal density fluctuations impacts on the final energies achieved by electron bunches. Conditions that minimize the role of the longitudinal plasma density fluctuations are found. The influence of higher order Laguerre-Gaussian laser pulses is also investigated. We find that higher order laser modes typically lead to lower energy gains. Certain combinations of higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and Controlled Fusio

    Remarks on NonHamiltonian Statistical Mechanics: Lyapunov Exponents and Phase-Space Dimensionality Loss

    Full text link
    The dissipation associated with nonequilibrium flow processes is reflected by the formation of strange attractor distributions in phase space. The information dimension of these attractors is less than that of the equilibrium phase space, corresponding to the extreme rarity of nonequilibrium states. Here we take advantage of a simple model for heat conduction to demonstrate that the nonequilibrium dimensionality loss can definitely exceed the number of phase-space dimensions required to thermostat an otherwise Hamiltonian system.Comment: 5 pages, 2 figures, minor typos correcte

    Uniform tiling with electrical resistors

    Get PDF
    The electric resistance between two arbitrary nodes on any infinite lattice structure of resistors that is a periodic tiling of space is obtained. Our general approach is based on the lattice Green's function of the Laplacian matrix associated with the network. We present several non-trivial examples to show how efficient our method is. Deriving explicit resistance formulas it is shown that the Kagom\'e, the diced and the decorated lattice can be mapped to the triangular and square lattice of resistors. Our work can be extended to the random walk problem or to electron dynamics in condensed matter physics.Comment: 22 pages, 14 figure
    • …
    corecore