4,124 research outputs found
Modeling and Evaluating of Business Revenue Models under Different Product Life Cycles Using System Dynamics Simulation
Business revenue modelling is one of the important aspects of enterprise planning to create values for enterprises. In this study, we construct a system dynamics simulation model to evaluate various business revenue models applied to e-platforms. Machining tools industry is investigated as a case study. Products with different life cycles are examined as applying different business models. Computational experiments are conducted and results are discussed. Specific research issues/contributions of the study include: 1. To propose four effective business revenue models in such an industry. 2. To evaluate the proposed business revenue models as well as their advantages/disadvantages by a system dynamics simulation. 3. To address managerial implications of these business revenue models to the industry. As a conclusion to our research, we show that: (i) Firms with products under growth or mature stage of life cycle adopt/switch appropriate business revenue models conforming to their requirements in different stages and result in high performance outcomes than those remaining in a single business revenue model. (ii) Business revenue models represented by causal loops of system dynamics and examined by system simulation can capture not only steady states but transient states of business activities. By taking advantages of the proposed approach, managers can thus efficiently make right decisions for reducing time and cost
Revisiting the Equivalence Problem for Finite Multitape Automata
The decidability of determining equivalence of deterministic multitape
automata (or transducers) was a longstanding open problem until it was resolved
by Harju and Karhum\"{a}ki in the early 1990s. Their proof of decidability
yields a co_NP upper bound, but apparently not much more is known about the
complexity of the problem. In this paper we give an alternative proof of
decidability, which follows the basic strategy of Harju and Karhumaki but
replaces their use of group theory with results on matrix algebras. From our
proof we obtain a simple randomised algorithm for deciding language equivalence
of deterministic multitape automata and, more generally, multiplicity
equivalence of nondeterministic multitape automata. The algorithm involves only
matrix exponentiation and runs in polynomial time for each fixed number of
tapes. If the two input automata are inequivalent then the algorithm outputs a
word on which they differ
Theory of impedance networks: The two-point impedance and LC resonances
We present a formulation of the determination of the impedance between any
two nodes in an impedance network. An impedance network is described by its
Laplacian matrix L which has generally complex matrix elements. We show that by
solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the
effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p}
- u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically
equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting
of inductances (L) and capacitances (C), the formulation leads to the
occurrence of resonances at frequencies associated with the vanishing of
lambda_a. This curious result suggests the possibility of practical
applications to resonant circuits. Our formulation is illustrated by explicit
examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63)
correcte
Regular Expression Matching and Operational Semantics
Many programming languages and tools, ranging from grep to the Java String
library, contain regular expression matchers. Rather than first translating a
regular expression into a deterministic finite automaton, such implementations
typically match the regular expression on the fly. Thus they can be seen as
virtual machines interpreting the regular expression much as if it were a
program with some non-deterministic constructs such as the Kleene star. We
formalize this implementation technique for regular expression matching using
operational semantics. Specifically, we derive a series of abstract machines,
moving from the abstract definition of matching to increasingly realistic
machines. First a continuation is added to the operational semantics to
describe what remains to be matched after the current expression. Next, we
represent the expression as a data structure using pointers, which enables
redundant searches to be eliminated via testing for pointer equality. From
there, we arrive both at Thompson's lockstep construction and a machine that
performs some operations in parallel, suitable for implementation on a large
number of cores, such as a GPU. We formalize the parallel machine using process
algebra and report some preliminary experiments with an implementation on a
graphics processor using CUDA.Comment: In Proceedings SOS 2011, arXiv:1108.279
Theory of resistor networks: The two-point resistance
The resistance between arbitrary two nodes in a resistor network is obtained
in terms of the eigenvalues and eigenfunctions of the Laplacian matrix
associated with the network. Explicit formulas for two-point resistances are
deduced for regular lattices in one, two, and three dimensions under various
boundary conditions including that of a Moebius strip and a Klein bottle. The
emphasis is on lattices of finite sizes. We also deduce summation and product
identities which can be used to analyze large-size expansions of two-and-higher
dimensional lattices.Comment: 30 pages, 5 figures now included; typos in Example 1 correcte
The yellow European eel (Anguilla anguilla L.) may adopt a sedentary lifestyle in inland freshwaters
We analysed the movements of the growing yellow phase using a long-term markârecapture programme on European eels in a small catchment (the FrĂŠmur, France). The results showed that of the yellow eels (>200 mm) recaptured, more than 90% were recaptured at the original marking site over a long period before the silvering metamorphosis and downstream migration. We conclude that yellow European eels >200 mm may adopt a sedentary lifestyle in freshwater area, especially in small catchment
Influence of realistic parameters on state-of-the-art LWFA experiments
We examine the influence of non-ideal plasma-density and non-Gaussian
transverse laser-intensity profiles in the laser wakefield accelerator
analytically and numerically. We find that the characteristic amplitude and
scale length of longitudinal density fluctuations impacts on the final energies
achieved by electron bunches. Conditions that minimize the role of the
longitudinal plasma density fluctuations are found. The influence of higher
order Laguerre-Gaussian laser pulses is also investigated. We find that higher
order laser modes typically lead to lower energy gains. Certain combinations of
higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and
Controlled Fusio
Remarks on NonHamiltonian Statistical Mechanics: Lyapunov Exponents and Phase-Space Dimensionality Loss
The dissipation associated with nonequilibrium flow processes is reflected by
the formation of strange attractor distributions in phase space. The
information dimension of these attractors is less than that of the equilibrium
phase space, corresponding to the extreme rarity of nonequilibrium states. Here
we take advantage of a simple model for heat conduction to demonstrate that the
nonequilibrium dimensionality loss can definitely exceed the number of
phase-space dimensions required to thermostat an otherwise Hamiltonian system.Comment: 5 pages, 2 figures, minor typos correcte
Uniform tiling with electrical resistors
The electric resistance between two arbitrary nodes on any infinite lattice
structure of resistors that is a periodic tiling of space is obtained. Our
general approach is based on the lattice Green's function of the Laplacian
matrix associated with the network. We present several non-trivial examples to
show how efficient our method is. Deriving explicit resistance formulas it is
shown that the Kagom\'e, the diced and the decorated lattice can be mapped to
the triangular and square lattice of resistors. Our work can be extended to the
random walk problem or to electron dynamics in condensed matter physics.Comment: 22 pages, 14 figure
- âŚ