243 research outputs found

    Comparison of the effect of locking vs standard screws on the mechanical properties of bone-plate constructs in a comminuted diaphyseal fracture model

    Get PDF
    The purpose of this study was to compare the mechanical properties of bone-plate constructs with locking compression plates (LCP) used either with standard screws or with locking screws on an experimental model of comminuted fracture

    An unusual meteor spectrum

    Get PDF
    An extraordinary spectrum of a meteor at a velocity of about 18.5 + or - 1.0 km/s was observed with an image orthicon camera. The radiant of the meteor was at an altitude of about 49 deg. It was first seen showing a yellow red continuous spectrum alone at a height of 137 + or - 8 km which is ascribed to the first positive group of nitrogen bands. After the meteor had descended to 116 + or - 6 km above sea level it brightened rapidly from its previous threshold brightness into a uniform continuum, the D-line of neutral sodium appeared, and at height 105 + or - 5 km all the other lines of the spectrum also appeared. The continuum remained dominant to the end. Water of hydration and entrained carbon flakes of characteristic dimension about 0.2 micron or less are proposed as constituents of the meteoroid to explain these phenomena

    Biomechanics applied to computer-aided diagnosis: examples of orbital and maxillofacial surgeries

    Get PDF
    This paper introduces the methodology proposed by our group to model the biological soft tissues deformations and to couple these models with Computer-Assisted Surgical (CAS) applications. After designing CAS protocols that mainly focused on bony structures, the Computer Aided Medical Imaging group of Laboratory TIMC (CNRS, France) now tries to take into account the behaviour of soft tissues in the CAS context. For this, a methodology, originally published under the name of the Mesh-Matching method, has been proposed to elaborate patient specific models. Starting from an elaborate manually-built "generic" Finite Element (FE) model of a given anatomical structure, models adapted to the geometries of each new patient ("patient specific" FE models) are automatically generated through a non-linear elastic registration algorithm. This paper presents the general methodology of the Mesh-Matching method and illustrates this process with two clinical applications, namely the orbital and the maxillofacial computer-assisted surgeries

    In Vivo Tracking and 1H/19F Magnetic Resonance Imaging of Biodegradable Polyhydroxyalkanoate / Polycaprolactone Blend Scaffolds Seeded with Labeled Cardiac Stem Cells

    Get PDF
    Medium-chain length Polyhydroxyalkanoates (MCL-PHAs) have demonstrated exceptional properties for cardiac tissue engineering (CTE) applications. Despite prior work on MCL-PHA/Polycaprolactone (PCL) blends, optimal scaffold production and use as an alternative delivery route for controlled release of seeded cardiac progenitor cells (CPCs) in CTE applications in vivo has been lacking, We present herein applicability of MCL-PHA/PCL (95/5 wt%) blends fabricated as thin films with an improved performance compared to the neat MCL-PHA aiming to a) benefit from the material properties of natural and synthetic polymers, b) achieve controlled delivery and increase retention of delivered cells to the murine myocardium, c) extend the temporal window over which the release of labeled CPCs occurs compared to traditional direct injection techniques, and d) use 19F MRI/MRS to noninvasively detect, and longitudinally monitor the seeded scaffolds. Polymer characterization confirmed the chemical structure and composition of the synthesized scaffolds, while thermal, wettability, and mechanical properties were also investigated and compared in neat and porous counterparts. In vitro cytocompatibility studies were performed using perfluorocrown-ether (PFCE)-nanoparticle-labeled murine cardiac progenitor cells (CPC), and studied using confocal microscopy and 19F MRS/MRI. Seeded scaffolds were implanted and studied in the post-mortem murine heart in situ, and in two additional C57BL/6 mice in vivo (using single-layered and double-layered scaffolds) and imaged immediately after and at 7 days post-implantation. Superior MCL-PHA/PCL scaffold performance has been demonstrated compared to MCL-PHA through experimental comparisons of a) morphological data using scanning electron microscopy and b) contact angle measurements attesting to improved CPC adhesion, c) in vitro confocal microscopy showing increased SC proliferative capacity, d) mechanical testing that elicited good overall responses. In vitro MRI results justify the increased seeding density, increased in vitro MRI signal, and improved MRI visibility in vivo, in the double-layered compared to the single-layered scaffolds. Histological evaluations (bright-field, cytoplasmic (Atto647) and nuclear (DAPI) stains) performed in conjunction with confocal microscopy imaging attest to CPC binding within the scaffold, subsequent release and migration to the neighboring myocardium, and to increased retention in the murine myocardium in the case of the double-layered scaffold. Thus MCL-PHA/PCL blends possess tremendous potential for controlled delivery of CPCs and to maximize possible regeneration in myocardial infarction

    Improving health and well-being through community health champions: a thematic evaluation of a programme in Yorkshire and Humber.

    Get PDF
    AIMS: The contribution that lay people can make to the public health agenda is being increasingly recognised in research and policy literature. This paper examines the role of lay workers (referred to as 'community health champions') involved in community projects delivered by Altogether Better across Yorkshire and Humber. The aim of the paper is to describe key features of the community health champion approach and to examine the evidence that this type of intervention can have an impact on health. METHODS: A qualitative approach was taken to the evaluation, with two strands to gathering evidence: interviews conducted with different stakeholder groups including project leads, key partners from community and statutory sectors and community workers, plus two participatory workshops to gather the views of community health champions. Seven projects (from a possible 12) were identified to be involved in the evaluation. Those projects that allowed the evaluation team to explore fully the champion role (training, infrastructure, etc.) and how that works in practice as a mechanism for empowerment were selected. In total, 29 semi-structured interviews were conducted with project staff and partners, and 30 champions, varying in terms of age, gender, ethnicity and disability, took part in the workshops. RESULTS: Becoming a community health champion has health benefits such as increased self-esteem and confidence and improved well-being. For some champions, this was the start of a journey to other opportunities such as education or paid employment. There were many examples of the influence of champions extending to the wider community of family, friends and neighbours, including helping to support people to take part in community life. Champions recognised the value of connecting people through social networks, group activities, and linking people into services and the impact that that had on health and well-being. Project staff and partners also recognised that champions were promoting social cohesiveness and helping to integrate people into their community. CONCLUSIONS: The recent public health White Paper suggested that the Altogether Better programme is improving individual and community health as well as increasing social capital, voluntary activity and wider civic participation. This evaluation supports this statement and suggests that the community health champion role can be a catalyst for change for both individuals and communities

    WACCM-D Whole Atmosphere Community Climate Model with D-region ion chemistry

    Get PDF
    Energetic particle precipitation (EPP) and ion chemistry affect the neutral composition of the polar middle atmosphere. For example, production of odd nitrogen and odd hydrogen during strong events can decrease ozone by tens of percent. However, the standard ion chemistry parameterization used in atmospheric models neglects the effects on some important species, such as nitric acid. We present WACCM-D, a variant of the Whole Atmosphere Community Climate Model, which includes a set of lower ionosphere (D-region) chemistry: 307 reactions of 20 positive ions and 21 negative ions. We consider realistic ionization scenarios and compare the WACCM-D results to those from the Sodankylä Ion and Neutral Chemistry (SIC), a state-of-the-art 1-D model of the D-region chemistry. We show that WACCM-D produces well the main characteristics of the D-region ionosphere, as well as the overall proportion of important ion groups, in agreement with SIC. Comparison of ion concentrations shows that the WACCM-D bias is typically within ±10% or less below 70 km. At 70–90 km, when strong altitude gradients in ionization rates and/or ion concentrations exist, the bias can be larger for some groups but is still within tens of percent. Based on the good agreement overall and the fact that part of the differences are caused by different model setups, WACCM-D provides a state-of-the-art global representation of D-region ion chemistry and is therefore expected to improve EPP modeling considerably. These improvements are demonstrated in a companion paper by Andersson et al

    Effect of pathology type and severity on the distribution of MRI signal intensities within the degenerated nucleus pulposus: application to idiopathic scoliosis and spondylolisthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disc degeneration is characterized by a loss of cellularity, degradation of the extracellular matrix, and, as a result, morphological changes and biomechanical alterations. We hypothesized that the distribution of the MR signal intensity within the nucleus zone of the intervertebral disc was modified according to the pathology and the severity of the pathology. The objective of this study was to propose new parameters characterizing the distribution of the signal intensity within the nucleus zone of lumbar intervertebral discs, and to quantify these changes in patients suffering from spondylolisthesis or idiopathic scoliosis.</p> <p>Methods</p> <p>A retrospective study had been performed on T2-weighted MR images of twenty nine patients suffering from spondylolisthesis and/or scoliosis. The high intensity zone of the nucleus pulposus was semi-automatically detected. The distance "DX" between the center weighted by the signal intensity and the geometrical center was quantified. The sum of the signal intensity on the axis perpendicular to the longitudinal axis of the disc was plotted for each position of the longitudinal axis allowing defining the maximum sum "SM" and its position "PSM".</p> <p>Results</p> <p>"SM" was clearly higher and "PSM" was more shifted for scoliosis than for spondylolisthesis. A two-way analysis of variance showed that the differences observed on "DX" were not attributed to the pathology nor its severity, the differences observed on "SM" were attributed to the pathology but not to its severity, and the differences observed on "PSM" were attributed to both the pathology and its severity.</p> <p>Conclusions</p> <p>The technique proposed in this study showed significant differences in the distribution of the MR signal intensity within the nucleus zone of intervertebral discs due to the pathology and its severity. The dependence of the "PSM" parameter to the severity of the pathology suggests this parameter as a predictive factor of the pathology progression. This new technique should be useful for the early diagnosis of intervertebral disc pathologies as it highlights abnormal patterns in the MRI signal for low severity of the pathology.</p

    Genetic susceptibility to burnout in a Swedish twin cohort

    Get PDF
    Most previous studies of burnout have focused on work environmental stressors, while familial factors so far mainly have been overlooked. The aim of the study was to estimate the relative importance of genetic influences on burnout (measured with Pines Burnout Measure) in a sample of monozygotic (MZ) and dizygotic (DZ) Swedish twins. The study sample consisted of 20,286 individuals, born 1959–1986 from the Swedish twin registry who participated in the cross-sectional study of twin adults: genes and environment. Probandwise concordance rates (the risk for one twin to be affected given that his/her twin partner is affected by burnout) and within pair correlations were calculated for MZ and DZ same—and opposite sexed twin pairs. Heritability coefficients i.e. the proportion of the total variance attributable to genetic factors were calculated using standard biometrical model fitting procedures. The results showed that genetic factors explained 33% of the individual differences in burnout symptoms in women and men. Environmental factors explained a substantial part of the variation as well and are thus important to address in rehabilitation and prevention efforts to combat burnout
    corecore