511 research outputs found
Dopamine Receptors in Parkinson's Disease: A Meta-Analysis of Imaging Studies
AbstractDopamine receptors are abundant along the central nigrostriatal tract and are expressed as 5 subtypes in two receptor families. In PD, compensatory changes in dopamine receptors emerge as a consequence of the loss of dopamine nerve terminals or dopaminergic pharmacotherapy. We performed a systematic review and metaâanalysis of the available PET and singleâphoton emission computed tomography studies that have investigated dopamine receptors in PD, PSP and MSA. The inclusion criteria were studies including human PET or singleâphoton emission computed tomography imaging; dopamine receptor tracers (D1âlike or D2âlike) and idiopathic PD, PSP, or MSA patients compared with healthy controls. The 67 included D2âlike studies had 1925 patients. Data were insufficient for an analysis of D1âlike studies. PD patients had higher striatal binding early in the disease, but after a disease duration of 4.36âyears, PD patients had lower binding values than healthy controls. Striatal D2R binding was highest in unmedicated early PD patients and in the striatum contralateral to the predominant motor symptoms. PSP and MSAâP patients had lower striatal D2R binding than PD patients (14.2% and 21.8%, respectively). There is initial upregulation of striatal D2Rs in PD, which downregulate on average 4âyears after motor symptom onset, possibly because of agonistâinduced effects. The consistent upregulation of D2Rs in the PD striatum contralateral to the predominant motor symptoms indicates that receptor changes are driven by neurodegeneration and loss of striatal neuropil. Both PSP and MSA patients have clearly lower striatal D2R binding values than PD patients, which offers an opportunity for differential diagnostics. Š 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Societ
Validation of the 3-under-2 principle of cell wall growth in Gram-positive bacteria by simulation of a simple coarse-grained model
The aim of this work is to propose a first coarse-grained model of Bacillus
subtilis cell wall, handling explicitly the existence of multiple layers of
peptidoglycans. In this first work, we aim at the validation of the recently
proposed "three under two" principle.Comment: Revised introduction, results unchange
Imaging Impulsivity in Parkinson's Disease and the Contribution of the Subthalamic Nucleus
Taking risks is a natural human response, but, in some, risk taking is compulsive and may be detrimental. The subthalamic nucleus (STN) is thought to play a large role in our ability to inhibit responses. Differences between individuals' ability to inhibit inappropriate responses may underlie both the normal variation in trait impulsivity in the healthy population, as well as the pathological compulsions experienced by those with impulse control disorders (ICDs). Thus, we review the role of the STN in response inhibition, with a particular focus on studies employing imaging methodology. We also review the latest evidence that disruption of the function of the STN by deep brain stimulation in patients with Parkinson's disease can increase impulsivity
15-15Ti(Si) austenitic steel: Creep behaviour in hostile environment
This work aims at studying the creep behaviour of 15-15Ti(Si) austenitic steel, under uniaxial stress (range of 300-560 MPa), and its interaction with liquid lead. The steel was tested to verify its sensitivity to Liquid Metal Embrittlement (LME) and to simulate its behaviour in operating thermal and mechanical stress conditions of the IV generation Lead-cooled fast reactor. The experimental results permitted to plot the time-strain creep curve and the characteristic Norton-based curve, simulating the creep behaviour at all stress values. The comparison between the creep curves in air and in lead showed that the LME produces a decrease of creep-rupture time, a reduction of creep strain and then the loss of steel ductility. Moreover, the raw material and fracture surfaces were analyzed by Optical Microscope and Scanning Electron Microscope (SEM). SEM micrographs highlighted that lead changes both the mode and the type of specimen fracture. In addition, it was analyzed the lead action time, as the time after which the corrosion appears with macroscopic effects. Although some tests are still ongoing, it can be assumed that at high stresses, LME takes place after a long time of steel/lead contact while at low stresses, LME tends to prevail on creep effect
Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease
Rapid eye movement (REM) sleep behavior disorder (RBD) is a parasomnia characterized by polysomnography-confirmed REM sleep without atonia and dream-enacting behaviors. This disorder is considered a prodromal syndrome of alpha-synucleinopathies like Parkinson's disease (PD), where it affects more than 50% of PD patients. The underlying pathology of RBD has been generally understood to involve the pontine nuclei within the brainstem. However, the complete pathophysiology beyond the brainstem remains unclear as does its relationship with PD pathology. Therefore, this review aims to survey the neuroimaging literature involving PET, SPECT, and MR imaging techniques to provide an updated understanding of the neuro-chemical, structural, and functional changes in both RBD and PD patients comorbid with RBD. This review found neuroimaging evidence that indicate alterations to the dopaminergic and cholinergic system, blood perfusion, and glucose metabolism in both RBD patients and PD patients with RBD. Beyond the brainstem, structural and functional changes were found to involve the nigrostriatal system, limbic system, and the cortex-suggesting that RBD is a multi-systemic neurodegenerative process. Future investigations are encouraged to follow RBD patients longitudinally using multimodal imaging techniques to enhance our understanding of this parasomnia disorder. Uncovering which individuals are most likely to develop an alpha-synuclein disorder in the prodromal phase will improve patient outcomes and potentially aid in the development of novel treatments for patients affected by RBD
Immunomodulatory drugs in acute myeloid leukemia treatment
Immunomodulatory drugs (IMiDs) are analogs of thalidomide. They have immunomodulatory, antiangiogenic and proapoptotic properties and exert a role in regulating the tumor microenvironment. Recently IMiDs have been investigated for their pleiotropic properties and their therapeutic applications in both solid tumors (melanoma, prostate carcinoma and differentiated thyroid cancer) and hematological malignancies. Nowadays, they are applied in de novo and relapsed/ refractory multiple myeloma, in myelodysplastic syndrome, in del5q syndrome with specific use of lenalidomide and B-cell lymphoma. Several studies have been conducted in the last few years to explore IMiDs possible use in acute myeloid leukemia treatment. Here we report the mechanisms of action of IMiDs in acute myeloid leukemia and their potential future therapeutic application in this disease
Repetitive Transcranial Magnetic Stimulation of Dorsolateral Prefrontal Cortex Affects Performance of the Wisconsin Card Sorting Task during Provision of Feedback
Early functional neuroimaging studies of tasks evaluating executive processes, such as the Wisconsin card sorting task (WCST), only assessed trials in blocks that may contain a large amount of different cognitive processes. More recently, we showed using event-related fMRI that the dorsolateral prefrontal cortex (DL-PFC) significantly increased activity during feedback but not matching periods of the WCST, consistent with its proposed role in the monitoring of information in working memory. Repetitive transcranial magnetic stimulation (rTMS) is a method that allows to disrupt processing within a given cortical region and to affect task performance for which this region is significantly solicited. Here we applied rTMS to test the hypothesis that the DL-PFC stimulation influences monitoring of working memory without interfering with other executive functions. We applied rTMS to the right DL-PFC and the vertex (control site) in different time points of the WCST. When rTMS was applied to the DL-PFC specifically during the period when subjects were receiving feedback regarding their previous response, WCST performance deteriorated, while rTMS did not affect performance during matching either when maintaining set or during set-shifting. This selective impairment of the DL-PFC is consistent with its proposed role in monitoring of events in working memory
- âŚ