3,199 research outputs found

    Is simultaneous yy and ξ\xi--scaling in the quasi-elastic region accidental?

    Full text link
    We study the yy and ξ\xi--scaling of the nuclear response at large momentum transfer in order to understand how scaling based on very different descriptions of the elementary interaction can occur simultaneously. We find that the approximate validity of ξ\xi-scaling at low energy loss arises from the coincidental behavior of the quasielastic and deep inelastic cross sections.Comment: 4 pages, 3 Postscript figure

    Direct mapping of the finite temperature phase diagram of strongly correlated quantum models

    Full text link
    Optical lattice experiments, with the unique potential of tuning interactions and density, have emerged as emulators of nontrivial theoretical models that are directly relevant for strongly correlated materials. However, so far the finite temperature phase diagram has not been mapped out for any strongly correlated quantum model. We propose a remarkable method for obtaining such a phase diagram for the first time directly from experiments using only the density profile in the trap as the input. We illustrate the procedure explicitly for the Bose Hubbard model, a textbook example of a quantum phase transition from a superfluid to a Mott insulator. Using "exact" quantum Monte Carlo simulations in a trap with up to 10610^6 bosons, we show that kinks in the local compressibility, arising from critical fluctuations, demarcate the boundaries between superfluid and normal phases in the trap. The temperature of the bosons in the optical lattice is determined from the density profile at the edge. Our method can be applied to other phase transitions even when reliable numerical results are not available.Comment: 12 pages, 5 figure

    Present state of power electronics circuitry and perspectives of its development

    Get PDF
    This paper is devoted mainly to the circuitry, because element base is a big independent issue. Let us say a few words about terminology. A modern converter can be rarely represented as a simple device like “rectifier”, “inverter” etc. It usually consists of the combination of several units, performing elementary functions. For such multistage units it makes sense to use a definition of converter “technology”, keeping in mind some actions with electric current for a certain purpose. It is similar to the step activities in chemistry: to take a substance, to heat it etc. After the formulation of a goal and a number of necessary actions it is possible to present a corresponding structure circuit. According to described above we tried to mention basic technologies used in modern power electronics. The perspectives of the electronics in the nearest future are connected with the further improvement of basic technologies, because their combination allows for developing new technologies. In our opinion, there are four such technologies.Стаття присвячена проблемам схемотехніки у сучасній енергетиці. Розглянуто декілька напрямків розробок електроприводів, відмічено їхні переваги та недоліки. Описано сучасні схемотехнічні можливості та перспективні напрямки їхнього подальшого розвитку в Україні

    Microwave Antennas and Circuits Modeling Using Electromagnetic Field Simulator

    Get PDF
    Electromagnetic field simulators have become a widely used tool in a design process of microwave circuits and systems. A proper usage of electromagnetic (EM) field simulators allows substantial reduction of the design time providing reliable results. In such case the required parameters of the designed circuit can be reached even at the first manufactured prototype in spite of high complexity of the structure. However, EM simulation as a numerical process suffers from systematic and random errors similar to measurement using real equipment. Thus the setting of the EM-field simulator such as a frequency range, mesh properties, usage of PEC and PMC walls etc. has to be done with the highest attention and the simulation results have to be always verified using well-established techniques. The aim of the paper is to demonstrate the selected capability of EM-field simulators with a few examples of antenna and circuit modeling. Also an issue of reliability and simulation errors will be discussed

    Когнітивні викликані потенціали у спортсменів різної спеціалізації

    Get PDF
    Викликані потенціали кори головного мозку є проявом активаційних процесів, пов’язаних із сприйняттям та обробкою стимульної інформації. Згідно з існуючими уявленнями особливу роль у дослідженні мозкових механізмів когнітивних функцій спортсменів відіграють методи електричної активності, зокрема метод викликаних потенціалів

    Connections of Trapezoidal Sheets under Fire

    Get PDF
    This paper describes two different experiments on connections of trapezoidal sheets under elevated temperatures. The first experiments were tensile tests carried out on four sets of tests with screwed connections under ambient and elevated temperatures. One diameter of self-drilling screws and three different thicknesses of trapezoidal sheets were used. The applied screws were without washers, or with sealed or steel washers. The second experiment was performed in a laboratory furnace to check the catenary action of a thin-walled trapezoidal sheet. The basic theory tested in this experiment was that in the first phase of the fire the sheet behaves as a simply supported beam, while in the second phase the load bearing is transferred by a tension membrane. These experiments will be used to develop a design model of connections at high temperatures. High fire resistance of the trapezoidal sheet, dependent on suitable design of the screwed connection to the bearing structure, was confirmed. The experiment with the simple beam also confirmed catenary action.

    Anomalous Spin Dynamics in Doped Quantum Antiferromagnets

    Full text link
    Finite-temperature spin dynamics in planar t-J model is studied using the method based on the Lanczos diagonalization of small systems. Dynamical spin structure factor at moderate dopings shows the coexistence of free-fermion-like and spin-fluctuation timescales. At T<J, the low-frequency and static susceptibility show pronounced T dependence, supporting a scenario, related to the marginal Fermi-liquid one, for the explanation of neutron-scattering and NMR-relaxation experiments in cuprates. Calculated NMR relaxation rates reasonably reproduce experimental ones.Comment: 10 pages + 4 figures, Postscript in uuencoded compressed tar file, IJS-TP-94/2

    Quantum Critical Scaling in a Moderately Doped Antiferromagnet

    Full text link
    Using high temperature expansions for the equal time correlator S(q)S(q) and static susceptibility χ(q)\chi(q) for the t-J model, we present evidence for quantum critical (QC), z ⁣= ⁣1z\!=\!1, behavior at intermediate temperatures in a broad range of t/Jt/J ratio, doping, and temperatures. We find that the dynamical susceptibility is very close to the universal scaling function computable for the asymptotic QC regime, and that the dominant energy scale is temperature. Our results are in excellent agreement with measurements of the spin-echo decay rate, 1/T2G1/T_{\rm 2G}, in La2_2CuO4_4, and provide qualitative understanding of both 1/T11/T_1 and 1/T2G1/T_{\rm 2G} nuclear relaxation rates in doped cuprates.Comment: 11 pages, REVTeX v3.0, PostScript file for 3 figures is attached, UIUC-P-93-07-068. In this revised version, we calculate the scaling functions and thus present new and more direct evidence in favor of our original conclusion
    corecore