86 research outputs found

    Low Temperature Studies of Charge Dynamics of Nitrogen-Vacancy Defect in Diamond

    Full text link
    In this paper, we study the photoinduced switching of the nitrogen-vacancy (NV) center between two different charge states - negative (NV-) and neutral (NV0) at liquid helium temperature. The conversion of NV- to NV0 on a single defect is experimentally proven and its rate scales quadratically with power under resonant excitation. In addition, we found that resonant excitation of the neutral NV changes the charge state, recovering its negative configuration. This type of conversion significantly improves spectral stability of NV- defect and allows high fidelity initialization of the spin qubit. A possible mechanism for ionization and recovery of the NV- defect is discussed. This study provides better understanding of the charge dynamics of the NV center, which is relevant for quantum information processing based on NV defect in diamond.Comment: 5 pages, 4 figure

    Photo induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single shot charge state detection

    Full text link
    The nitrogen-vacancy centre (NV) has drawn much attention for over a decade, yet detailed knowledge of the photophysics needs to be established. Under typical conditions, the NV can have two stable charge states, negative (NV-) or neutral (NV0), with photo induced interconversion of these two states. Here, we present detailed studies of the ionization dynamics of single NV centres in bulk diamond at room temperature during illumination in dependence of the excitation wavelength and power. We apply a recent method which allows us to directly measure the charge state of a single NV centre, and observe its temporal evolution. Results of this work are the steady state NV- population, which was found to be always < 75% for 450 to 610 nm excitation wavelength, the relative absorption cross-section of NV- for 540 to 610 nm, and the energy of the NV- ground state of 2.6 eV below the conduction band. These results will help to further understand the photo-physics of the NV centre.Comment: 9 pages, 7 figure

    Integrated Diamond Optics for Single Photon Detection

    Full text link
    Optical detection of single defect centers in the solid state is a key element of novel quantum technologies. This includes the generation of single photons and quantum information processing. Unfortunately the brightness of such atomic emitters is limited. Therefore we experimentally demonstrate a novel and simple approach that uses off-the-shelf optical elements. The key component is a solid immersion lens made of diamond, the host material for single color centers. We improve the excitation and detection of single emitters by one order of magnitude, as predicted by theory.Comment: 10 pages, 3 figure

    Coherence of single spins coupled to a nuclear spin bath of varying density

    Get PDF
    The dynamics of single electron and nuclear spins in a diamond lattice with different 13C nuclear spin concentration is investigated. It is shown that coherent control of up to three individual nuclei in a dense nuclear spin cluster is feasible. The free induction decays of nuclear spin Bell states and single nuclear coherences among 13C nuclear spins are compared and analyzed. Reduction of a free induction decay time T2* and a coherence time T2 upon increase of nuclear spin concentration has been found. For diamond material with depleted concentration of nuclear spin, T2* as long as 30 microseconds and T2 of up to 1.8 ms for the electron spin has been observed. The 13C concentration dependence of T2* is explained by Fermi contact and dipolar interactions with nuclei in the lattice. It has been found that T2 decreases approximately as 1/n, where n is 13C concentration, as expected for an electron spin interacting with a nuclear spin bath.Comment: 4 pages, 4 figures, 1 movie (avi), 1 supplementary material (pdf

    Engineering chromium related single photon emitters in single crystal diamond

    Get PDF
    Color centers in diamond as single photon emitters, are leading candidates for future quantum devices due to their room temperature operation and photostability. The recently discovered chromium related centers are particularly attractive since they possess narrow bandwidth emission and a very short lifetime. In this paper we investigate the fabrication methodologies to engineer these centers in monolithic diamond. We show that the emitters can be successfully fabricated by ion implantation of chromium in conjunction with oxygen or sulfur. Furthermore, our results indicate that the background nitrogen concentration is an important parameter, which governs the probability of success to generate these centers.Comment: 14 pages, 5 figure

    Low temperature studies of the excited-state structure of Nitrogen-Vacancy color centers in diamond

    Full text link
    We report a study of the 3E excited-state structure of single nitrogen-vacancy (NV) defects in diamond, combining resonant excitation at cryogenic temperatures and optically detected magnetic resonance. A theoretical model of the excited-state structure is developed and shows excellent agreement with experimental observations. Besides, we show that the two orbital branches associated with the 3E excited-state are averaged when operating at room temperature. This study leads to an improved physical understanding of the NV defect electronic structure, which is invaluable for the development of diamond-based quantum information processing.Comment: 4 pages, 4 figure

    Ultrabright single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots

    Get PDF
    Striving for nanometer-sized solid-state single-photon sources, we investigate atom-like quantum emitters based on single germanium-vacancy (GeV) centers isolated in crystalline nanodiamonds (NDs). Cryogenic characterization indicated symmetry-protected and bright (>106 counts/s with off-resonance excitation) zero-phonon optical transitions with up to 6-fold enhancement in energy splitting of their ground states as compared to that found for GeV centers in bulk diamonds (i.e. up to 870 GHz in highly strained NDs vs. 150 GHz in bulk). Utilizing lithographic alignment techniques, we demonstrate an integrated nanophotonic platform for deterministic interfacing plasmonic waveguides with isolated GeV centers in NDs, which enables 10-fold enhancement of single-photon decay rates along with the emission direction control by judiciously designing and positioning a Bragg reflector. This approach allows one to realize the unidirectional emission from single-photon dipolar sources, thereby opening new perspectives for the realization of quantum optical integrated circuits

    Ultra-bright and efficient single photon generation based on N-V centres in nanodiamonds on a solid immersion lens

    Get PDF
    Single photons are fundamental elements for quantum information technologies such as quantum cryptography, quantum information storage and optical quantum computing. Colour centres in diamond have proven to be stable single photon sources and thus essential components for reliable and integrated quantum information technology. A key requirement for such applications is a large photon flux and a high efficiency. Paying tribute to various attempts to maximise the single photon flux we show that collection efficiencies of photons from colour centres can be increased with a rather simple experimental setup. To do so we spin-coated nanodiamonds containing single nitrogen-vacancy colour centres on the flat surface of a ZrO2 solid immersion lens. We found stable single photon count rates of up to 853 kcts/s at saturation under continuous wave excitation while having excess to more than 100 defect centres with count rates from 400 kcts/s to 500 kcts/s. For a blinking defect centre we found count rates up to 2.4 Mcts/s for time intervals of several ten seconds. It seems to be a general feature that very high rates are accompanied by a blinking behaviour. The overall collection efficiency of our setup of up to 4.2% is the highest yet reported for N-V defect centres in diamond. Under pulsed excitation of a stable emitter of 10 MHz, 2.2% of all pulses caused a click on the detector adding to 221 kcts/s thus opening the way towards diamond based on-demand single photon sources for quantum applications

    Coherence properties of a single dipole emitter in diamond

    Full text link
    On-demand, high repetition rate sources of indistinguishable, polarised single photons are the key component for future photonic quantum technologies. Colour centres in diamond offer a promising solution, and the narrow line-width of the recently identified nickel-based NE8 centre makes it particularly appealing for realising the transform-limited sources necessary for quantum interference. Here we report the characterisation of dipole orientation and coherence properties of a single NE8 colour centre in a diamond nanocrystal at room-temperature. We observe a single photon coherence time of 0.21 ps and an emission lifetime of 1.5 ns. Combined with an emission wavelength that is ideally suited for applications in existing quantum optical systems, these results show that the NE8 is a far more promising source than the more commonly studied nitrogen-vacancy centre and point the way to the realisation of a practical diamond colour centre-based single photon source.Comment: 10 pages, 4 colour figure
    • 

    corecore