354 research outputs found
Effects of L-histidine on hydrogen peroxide-induced DNA damage and cytotoxicity in cultured mammalian cells.
L-Histidine markedly increased the growth- and DNA synthesis-inhibitory effects elicited by hydrogen peroxide in cultured Chinese hamster ovary cells. DNA single-strand breakage was also higher in the presence of the amino acid and, in addition, these breaks were characterized by a slower rate of repair, compared with that of the breaks generated by the oxidant alone. In the presence of L-histidine, hydrogen peroxide also produced DNA double-strand breakage, a lesion that cannot be detected in cells treated with even exceedingly high concentrations of the oxidant alone. Data reported herein suggest that the L-histidine-mediated increase of the cytotoxic response of cultured Chinese hamster ovary cells to hydrogen peroxide may be at least partially dependent on the formation of DNA double-strand break
Tablet splitting in elderly patients with dementia: The case of quetiapine
Quetiapine is an atypical antipsychotic approved for treating schizophrenia, bipolar depression, and mania but is frequently used in an off-label manner to control the behavioral and psychological symptoms of dementia in elderly patients with dementia. Due to the need to personalize doses for elderly patients with dementia, quetiapine tablet manipulation is widespread in hospital settings, long-term care facilities, and patient homes. The aim of this study was to assess the impact of the different splitting techniques on quetiapine fumarate tablets by analysing the obtained sub-divided tablets and to discuss compliance with the European Pharmacopoeia limits on whole and split tablets. Quetiapine fumarate tablets of two dose strengths were taken at random (in a number able to assure a power of 0.8 during statistical comparison) and were split with a kitchen knife or tablet cutter. The weight and the drug content were determined for each half tablet. The obtained data were compared to the European Pharmacopoeia limits. The differences between the different splitting techniques were statistically tested. Data showed that split tablets, independently of the dose strength and the technique employed, were not compliant with the European Pharmacopoeia specifications for both entire and subdivided tablets in terms of weight and content uniformity. Thus, such a common practice could have potential effects on treatment efficacy and toxicity, especially when also considering the fragility of the elderly target population in which polypharmacotherapy is very common. These results indicate a compelling need for flexible quetiapine formulations that can assure more accurate dose personalization
Cytoprotective effect of preparations from various parts of Punica granatum L. fruits in oxidatively injured mammalian cells in comparison with their antioxidant capacity in cell free systems
none9Pomegranate (Punica granatum L.) juice (PJ) is being increasingly proposed as a nutritional supplement to prevent atherosclerosis in humans. This therapeutically valuable potential has been attributed to PJ antioxidant capacity which has been mostly tested by means of cell-free assays: indeed, to the best of our knowledge, no study has focused on the direct antioxidant capacity of PJ in cultured cells. Here, the antioxidant capacity in cell free-systems of preparations from various parts of pomegranate has been compared with their cytoprotective – bona fide antioxidant – activity in cultured human cells (U937 promonocytes and HUVEC endothelial cells) exposed to an array of oxidizing agents. Pomegranate derivatives were PJ, arils only juice (AJ) and aqueous rinds extract (RE). In cell-free assays – 1,1-diphenyl-2-picrylhydrazyl (DPPH), chemiluminescence luminol/xanthine/xanthine oxidase and lipoxygenase assays – all the preparations displayed good antioxidant capacity, the relative potency order being RE > PJ > AJ. On the contrary, only RE was capable of preventing the deleterious effects – cytotoxicity, DNA damage and depletion of non protein sulphydrils (NPSH) pool – caused by treatment of cells with H2O2, tert-butylhydroperoxide (tB-OOH) or oxidized lipoproteins (Ox-LDL) via a mechanism which is likely to involve both direct scavenging of radical species and iron chelation. Surprisingly, AJ and PJ slightly sensitized cells to the cytotoxic effects of the three agents. Then it would appear that AJ, the major and tasty part of PJ, does not contain ellagic acid and punicalagin (i.e. the polyphenols highly represented in RE which are reputed to be responsible for the antioxidant capacity) in amounts sufficient to exert cytoprotection in oxidatively injured, living cells. Based on these results, the development and evaluation of rinds-only based derivatives for antiatherogenic preventive purposes in humans should be encouraged.openSESTILI P; MARTINELLI C; RICCI D; FRATERNALE D; BUCCHINI A; GIAMPERI L; CURCIO R; PICCOLI G; STOCCHI V.Sestili, Piero; Martinelli, Chiara; Ricci, Donata; Fraternale, Daniele; Bucchini, ANAHI ELENA ADA; Giamperi, Laura; Curcio, R; Piccoli, Giovanni; Stocchi, Vilbert
The expression analysis of mouse interleukin-6 splice variants argued against their biological relevance
Alternative splicing generates several interleukin-6 (IL-6) isoforms; for them an antagonistic activity to the wild-type IL-6 has been proposed. In this study we quantified the relative abundance of IL-6 mRNA isoforms in a panel of mouse tissues and in C2C12 cells during myoblast differentiation or after treatment with the Ca2+ ionophore A23187, the AMP-mimetic AICAR and TNF-alpha. The two mouse IL-6 isoforrns identified, IL-6 delta 5 (deletion of the first 58 bp of exon 5) and IL-6 delta 3 (lacking exon 3), were not conserved in rat and human, did not exhibit tissue specific regulation, were expressed at low levels and their abundance closely correlated to that of full-length IL-6. Species-specific features of the IL-6 sequence, such as the presence of competitive 3' acceptor site in exon 5 and insertion of retrotransposable elements in intron 3, could explain the production of IL-6 delta 5 and IL-6 delta 3. Our results argued against biological significance for mouse IL-6 isoforms
The suppression of TdMRP3 genes reduces the phytic acid and increases the nutrient accumulation in durum wheat grain
Micronutrient malnutrition affects more than half of the world population. Reduced bioavailability of microelements in the raw materials is considered one of the main causes of mineral deficiency in populations whose diet is largely based on the consumption of staple crops. In this context, the production of low phytic acid (lpa) cereals is a main goal of the breeding programs, as phytic acid (PA) binds essential mineral cations such as iron (Fe), zinc (Zn), manganese (Mn), potassium (K), calcium (Ca) and magnesium (Mg) precipitating in the form of phytate salts poorly digested by monogastric animals, including humans, due to the lack of phytases in the digestive tract. Since PA limits the bioavailability of microelements, it is widely recognized as an anti-nutritional compound. A Targeting Induced Local Lesions IN Genomes (TILLING) approach has been undertaken to silence the genes encoding the TdABCC13 proteins, known as Multidrug-Resistance associated Proteins 3 (TdMRP3), transporters involved in the accumulation of PA inside the vacuole in durum wheat. The TdMRP3 complete null genotypes showed a significant reduction in the content of PA and were able to accumulate a higher amount of essential micronutrients (Fe, Zn, Mn) compared to the control. The number of spikelets and seeds per spike, traits associated with the agronomic performances, were reduced compared to the control, but the negative effect was in part balanced by the increased grain weight. The TdMRP3 mutant lines showed morphological differences in the root apparatus such as a significant decrease in the number of root tips, root length, volume and surface area and an increase in root average diameter compared to the control plants. These materials represent a promising basis for obtaining new commercial durum wheats with higher nutritional value
An Integrated Approach to Skeletal Muscle Health in Aging
A decline in muscle mass and function represents one of the most problematic changes associated with aging, and has dramatic effects on autonomy and quality of life. Several factors contribute to the inexorable process of sarcopenia, such as mitochondrial and autophagy dysfunction, and the lack of regeneration capacity of satellite cells. The physiologic decline in muscle mass and in motoneuron functionality associated with aging is exacerbated by the sedentary lifestyle that accompanies elderly people. Regular physical activity is beneficial to most people, but the elderly need well-designed and carefully administered training programs that improve muscle mass and, consequently, both functional ability and quality of life. Aging also causes alteration in the gut microbiota composition associated with sarcopenia, and some advances in research have elucidated that interventions via the gut microbiota-muscle axis have the potential to ameliorate the sarcopenic phenotype. Several mechanisms are involved in vitamin D muscle atrophy protection, as demonstrated by the decreased muscular function related to vitamin D deficiency. Malnutrition, chronic inflammation, vitamin deficiencies, and an imbalance in the muscle-gut axis are just a few of the factors that can lead to sarcopenia. Supplementing the diet with antioxidants, polyunsaturated fatty acids, vitamins, probiotics, prebiotics, proteins, kefir, and short-chain fatty acids could be potential nutritional therapies against sarcopenia. Finally, a personalized integrated strategy to counteract sarcopenia and maintain the health of skeletal muscles is suggested in this review
Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species.
Proteasome inhibition represents an important anticancer strategy. Here, we studied the mechanisms at the basis of the pro-apoptotic activity of the standardized decoction of Hemidesmus indicus, a plant evoking a complex anticancer activity, and explored its inhibition of proteasome activity in human leukemia cells. Additionally, we preliminary tested the cytotoxicity of some H. indicus's phytochemicals on leukemia cells and their intestinal absorption on a human intestinal epithelium model consisting of a monolayer of differentiated Caco2 cells. We observed a potent antileukemic effect for H. indicus, imputable to the modulation of different critical targets at protein and mRNA levels and the reduction of the 26S proteasome expression. We found that some phytomarkers of H. indicus decoction passed through the enterocyte monolayer. Overall, our study supports the pharmacological potential of H. indicus, which can represent an interesting botanical drug in the oncological area
No effect of creatine supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats
Background: Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr) could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR). Findings: Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 +/- 1.5 vs. Pl: 12.2 +/- 1.7 nmol.mg(-1); p = 0.87), heart (Cr: 11.5 +/- 1.8 vs. Pl: 14.6 +/- 1.1 nmol.mg(-1); p = 0.15), plasma (Cr: 67.7 +/- 9.1 vs. Pl: 56.0 +/- 3.2 nmol.mg(-1); p = 0.19), plantaris (Cr: 10.0 +/- 0.8 vs. Pl: 9.0 +/- 0.8 nmol.mg(-1); p = 0.40), and EDL muscle (Cr: 14.9 +/- 1.4 vs. Pl: 17.2 +/- 1.5 nmol.mg(-1); p = 0.30). Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05). Conclusions: Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.FAPES
- …