39 research outputs found

    Idiopathic central precocious puberty in girls: presentation factors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is sometimes difficult to distinguish between premature thelarche and precocious puberty in girls who develop breasts before the age of 8 years. We evaluated the frequencies of the signs associated with breast development and the factors influencing the presentation of girls with idiopathic central precocious puberty (CPP).</p> <p>Methods</p> <p>353 girls monitored 0.9 ± 0.7 year after the onset of CPP.</p> <p>Results</p> <p>The age at CPP was < 3 years in 2%, 3–7 years in 38% and 7–8 years in 60% of cases. Pubic hair was present in 67%, growth rate greater than 2 SDS in 46% and bone age advance greater than 2 years in 33% of cases. Breast development was clinically isolated in 70 (20%) cases. However, only 31 of these (8.8% of the population) had a prepubertal length uterus and gonadotropin responses to gonadotropin releasing hormone and plasma estradiol. The clinical picture of CPP became complete during the year following the initial evaluation.</p> <p>25% of cases were obese. The increase in weight during the previous year (3.7 ± 1.4 kg) and body mass index were positively correlated with the statural growth and bone age advance (P < 0.0001).</p> <p>There was no relationship between the clinical-biological presentation and the age at puberty, the interval between the onset of puberty and evaluation, or the presence of familial CPP.</p> <p>Conclusion</p> <p>The variation in presentation of girls with CPP does not depend on their age, interval between the onset and evaluation, or familial factors. This suggests that there are degrees of hypothalamic-pituitary-ovarian activation that are not explained by these factors.</p

    Clinical, Biological and Genetic Analysis of Prepubertal Isolated Ovarian Cyst in 11 Girls

    Get PDF
    BACKGROUND: The cause of isolated gonadotropin-independent precocious puberty (PP) with an ovarian cyst is unknown in the majority of cases. Here, we describe 11 new cases of peripheral PP and, based on phenotypes observed in mouse models, we tested the hypothesis that mutations in the GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX may be associated with this phenotype. METHODOLOGY/PRINCIPAL FINDINGS: 11 girls with gonadotropin-independent PP were included in this study. Three girls were seen for a history of prenatal ovarian cyst, 6 girls for breast development, and 2 girls for vaginal bleeding. With one exception, all girls were seen before 8 years of age. In 8 cases, an ovarian cyst was detected, and in one case, suspected. One other case has polycystic ovaries, and the remaining case was referred for vaginal bleeding. Four patients had a familial history of ovarian anomalies and/or infertility. Mutations in the coding sequences of the candidate genes GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX were not observed. CONCLUSIONS/SIGNIFICANCE: Ovarian PP shows markedly different clinical features from central PP. Our data suggest that mutations in the GNAS1, NR5A1, LHCGR, FSHR StAR, DMRT4 and NOBOX genes are not responsible for ovarian PP. Further research, including the identification of familial cases, is needed to understand the etiology of ovarian PP

    Heat shock proteins in stabilization of spontaneously restored sinus rhythm in permanent atrial fibrillation patients after mitral valve surgery

    Get PDF
    A spontaneously restored sinus rhythm in permanent atrial fibrillation patients has been often observed after mitral valve (MV) surgery, but persisting duration in sinus rhythm varies from patient to patient. Heat shock proteins (Hsps) may be involved in pathogenesis of atrial fibrillation. We hypothesized that stabilization of restored sinus rhythm is associated with expression of Hsps in the atria. To test this hypothesis, clinical data, biopsies of right atrial appendage, and blood samples were collected from 135 atrial fibrillation patients who spontaneously restored sinus rhythm after conventional isolated MV replacement. Comparison was made between patients who had recurrence of atrial fibrillation within 7 days (AF) vs. patients with persisted sinus rhythm for more than 7 days (SR). Results showed that SR patients had higher activity of heat shock transcription factor 1 (HSF1) as well as upregulated expressions of heat shock cognate 70, Hsp70, and Hsp27 in the tissues. The activation of HSF1–Hsps pathway was associated with less-aggressive pathogenesis as reflected by lower rates of myolysis, apoptosis, interstitial fibrosis, and inflammation in SR patients. However, Hsp60 was lower in both tissue and plasma in SR patients, and was positively correlated with apoptosis, interstitial fibrosis, and inflammation. These findings suggest that the Hsps play important roles in stabilization of restored sinus rhythm after MV surgery by inhibiting AF-related atrial remodeling and arrhythmogenic substrates in atrial fibrillation patients. Low circulating Hsp60 levels preoperatively might predict a stable spontaneously restored sinus rhythm postoperatively

    Electric and magnetic axion quark nuggets, their stability and their detection

    Get PDF
    The present work studies the dynamics of axion quark nuggets introduced in Zhitnitsky (JCAP 0310:010, 2003) and developed further in the works (Zhitnitsky in Phys Rev D 74:043515, 2006; Lawson and Zhitnitsky in Phys Lett B 724, 17, 2013; Lawson and Zhitnitsky in Phys Rev D 95:063521, 2017; Liang and Zhitnitsky in Phys Rev D 94:083502, 2016; Ge et al. in Phys Rev D 97:043008, 2018; Zhitnitsky in Phys Dark Univ 22:1, 2018; Lawson and Zhitnitsky in Phys Dark Univ 100295, 2019; Raza et al. in Phys Rev D 98:103527, 2018; Fischer et al. in Phys Rev D 98:043013, 2018; van Waerbeke and Zhitnitsky in Phys Rev D 99:043535, 2019; Flambaum and Zhitnitsky in Phys Rev D 99:043535, 2019; Lawson and Zhitnitsky in JCAP 02:049, 2017; Ge et al. in Phys Rev D 99:116017, 2019). The new feature considered here is the possibility that these nuggets become ferromagnetic. This possibility was pointed out in Tatsumi (Phys Lett B 489:280 2000) for ordinary quark nuggets, although ferromagnetism may also take place due some anomaly terms found in Son and Zhitnitsky (Phys Rev D 70:074018, 2004), Son and Stephanov (Phys Rev D 77:014021, 2008) and Melitski and Zhitnitsky (Phys Rev D 72:045011, 2005). The purpose of the present letter however, is not to give evidence in favor or against these statements. Instead, it is focused in some direct consequences of this ferromagnetic behavior, if it exists. The first is that the nugget magnetic field induces an electric field due to the axion wall, which may induce pair production by Schwinger effect. Depending on the value of the magnetic field, the pair production can be quite large. A critical value for such magnetic field at the surface of the nugget is obtained, and it is argued that the value of the magnetic field of Tatsumi (2000) is at the verge of stability and may induce large pair production. The consequences of this enhanced pair production may be unclear. It may indicate that the the nugget evaporates, but on the other hand it may be just an indication that the intrinsic magnetic field disappears and the nuggets evolves to a non magnetized state such as in Zhitnitsky (2003), Oaknin and Zhitnitsky (Phys. Rev. D 71:023519, 2005), Zhitnitsky (2006), Lawson and Zhitnitsky (2013), Lawson and Zhitnitsky (2017), Liang and Zhitnitsky (2016), Ge et al. (2018), Zhitnitsky (2018), Lawson and Zhitnitsky (2019), Raza et al. (2018), Fischer et al. (2018), van Waerbeke and Zhitnitsky (2019), Flambaum and Zhitnitsky (2019), Lawson and Zhitnitsky (2017), and Ge et al. (2019). The interaction of such magnetic and electric nugget with the troposphere of the earth is also analyzed. It is suggested that the cross section with the troposphere is enhanced in comparison with a non magnetic nugget but still, it does not violate the dark matter collision bounds. Consequently, these nuggets may be detected by impacts on water or by holes in the mountain craters (Pace VanDevender et al. in Sci Rep 7:8758, 2017). However, if the magnetic field does not decay before the actual universe, then this would lead to high energy electron flux due to its interaction with the electron gases of the Milky Way. This suggests that these magnetized quarks may be a considerably part of dark matter, but only if their hypothetical magnetic and electric fields are evaporated
    corecore