5,748 research outputs found
Drift mobility of long-living excitons in coupled GaAs quantum wells
We observe high-mobility transport of indirect excitons in coupled GaAs
quantum wells. A voltage-tunable in-plane potential gradient is defined for
excitons by exploiting the quantum confined Stark effect in combination with a
lithographically designed resistive top gate. Excitonic photoluminescence
resolved in space, energy, and time provides insight into the in-plane drift
dynamics. Across several hundreds of microns an excitonic mobility of >10^5
cm2/eVs is observed for temperatures below 10 K. With increasing temperature
the excitonic mobility decreases due to exciton-phonon scattering.Comment: 3 pages, 3 figure
Spectral Types of Planetary Host Star Candidates: Two New Transiting Planets?
Recently, 46 low-luminosity object transits were reported from the Optical
Gravitational Lensing Experiment. Our follow-up spectroscopy of the 16 most
promising candidates provides a spectral classification of the primary.
Together with the radius ratio from the transit measurements, we derived the
radii of the low-luminosity companions. This allows to examine the possible
sub-stellar nature of these objects. Fourteen of them can be clearly identified
as low-mass stars. Two objects, OGLE-TR-03 and OGLE-TR-10 have companions with
radii of 0.15 R_sun which is very similar to the radius of the transiting
planet HD209458B. The planetary nature of these two objects should therefore be
confirmed by dynamical mass determinations.Comment: 4 pages, 3 figures, accepted for publication by A&A Letter
The near-synchronous polar V1432 Aql (RX J1940.1-1025): Accretion geometry and synchronization time scale
The magnetic Cataclysmic Variable (mCV) V1432 Aql (RX 1940.1-1025) belongs to
the four-member subclass of near-synchronous polars with a slight
non-synchronism (<2 %) between the spin period of the white dwarf and the
binary period. In these systems the accretion geometry changes periodically
with phase of the beat cycle. We present the application of a dipole accretion
model for near-synchronous systems developed by Geckeler & Staubert (1997a) to
extended optical and X-ray data. We detect a significant secular change of the
white dwarf spin period in V1432 Aql of dP_spin/dt = -5.4 (+3.7/-3.2) 10-9 s/s
from the optical data set alone. This corresponds to a synchronization time
scale tau_sync = 199 (+441/-75) yr, comparable to the time scale of 170 yr for
V1500 Cyg. The synchronization time scale in V1432 Aql is in excellent
agreement with the theoretical prediction from the dominating magnetic torque
in near-synchronous systems. We also present period analyses of optical CCD
photometry and RXTE X-ray data, which argue against the existence of a 4000 s
period and an interpretation of V1432 Aql as an intermediate polar. The dipole
accretion model also allows to constrain the relevant parameters of the
accretion geometry in this system: the optical data allow an estimate of the
dimensionless parameter (R_t0'/R_wd)1/2 sin(beta) = 3.6 (+2.7/-1.1), with a
lower limit for the threading radius of R_t0' > 10 R_wd (68% confidence).Comment: 12 pages, 10 figures, 6 tables accepted by A&
Recommended from our members
Large-scale Quality Control of Cardiac Imaging in Population Studies: Application to UK Biobank
In large population studies such as the UK Biobank (UKBB), quality control of the acquired images by visual assessment is unfeasible. In this paper, we apply a recently developed fully-automated quality control pipeline for cardiac MR (CMR) images to the first 19,265 short-axis (SA) cine stacks from the UKBB. We present the results for the three estimated quality metrics (heart coverage, inter-slice motion and image contrast in the cardiac region) as well as their potential associations with factors including acquisition details and subject-related phenotypes. Up to 14.2% of the analysed SA stacks had sub-optimal coverage (i.e. missing basal and/or apical slices), however most of them were limited to the first year of acquisition. Up to 16% of the stacks were affected by noticeable inter-slice motion (i.e. average inter-slice misalignment greater than 3.4 mm). Inter-slice motion was positively correlated with weight and body surface area. Only 2.1% of the stacks had an average end-diastolic cardiac image contrast below 30% of the dynamic range. These findings will be highly valuable for both the scientists involved in UKBB CMR acquisition and for the ones who use the dataset for research purposes
Gating of high-mobility two-dimensional electron gases in GaAs/AlGaAs heterostructures
We investigate high-mobility two-dimensional electron gases in AlGaAs
heterostructures by employing Schottky-gate-dependent measurements of the
samples' electron density and mobility. Surprisingly, we find that two
different sample configurations can be set in situ with mobilities diering by a
factor of more than two in a wide range of densities. This observation is
discussed in view of charge redistributions between the doping layers and is
relevant for the design of future gateable high-mobility electron gases
Hybrid Quantum Dot-2D Electron Gas Devices for Coherent Optoelectronics
We present an inverted GaAs 2D electron gas with self-assembled InAs quantum
dots in close proximity, with the goal of combining quantum transport with
quantum optics experiments. We have grown and characterized several wafers --
using transport, AFM and optics -- finding narrow-linewidth optical dots and
high-mobility, single subband 2D gases. Despite being buried 500 nm below the
surface, the dots are clearly visible on AFM scans, allowing precise
localization and paving the way towards a hybrid quantum system integrating
optical dots with surface gate-defined nanostructures in the 2D gas.Comment: 4 pages, 5 figures (color
The Nature of the Driving Mechanism in the Pulsating Hybrid PG 1159 Star Abell 43
We extend our previous pulsational stability analyses of PG 1159 stars by
modeling the hybrid PG 1159 type star Abell 43. We show that the standard
kappa-mechanism due to the ionization of C and O in the envelope of this H-rich
PG 1159 star is perfectly able to drive g-mode pulsations. Thus, contrary to a
recent suggestion, there is no need to invoke any new or exotic mechanism to
explain the pulsational instabilities observed in this particular star. Our
expected instability band for l = 1 modes extends in period from ~ 2604 s to ~
5529 s, which is consistent with the available photometric observations of
Abell 43. We also suggest that efforts to detect luminosity variations in its
sibling NGC 7094 be pursued.Comment: 3 pages, 1 figure, Accepted for publication in A&
News From The Gamma Cephei Planetary System
The Gamma Cephei planetary system is one of the most interesting systems due
to several reasons: 1.) it is the first planet candidate detected by precise
radial velocity (RV) measurements that was discussed in the literature
(Campbell et al. 1988); 2.) it is a tight binary system with a ~ 20AU; and 3.)
the planet host star is an evolved K-type star. In Hatzes et al. (2003) we
confirmed the presence of the planetary companion with a minimum mass of 1.7
M_Jup at 2 AU. In this paper we present additional eight years of precise RV
data from the Harlan J. Smith 2.7 m Telescope and its Tull Coude spectrograph
at McDonald Observatory. The 900 d signal, that is interpreted as the presence
of the giant planetary companion, is strongly confirmed by adding the new data.
We present an updated orbital solution for the planet, which shows that the
planet is slightly more massive and the orbit more circular than previous
results have suggested. An intensive high-cadence week of RV observations in
2007 revealed that Gamma Cep A is a multi-periodic pulsator. We discuss this
issue within the context of searching for additional planets in this system.Comment: Part of PlanetsbeyondMS/2010 proceedings
http://arxiv.org/html/1011.660
- …