47 research outputs found

    Serum antibodies against p53 in relation to cancer risk and prognosis in breast cancer: a population-based epidemiological study

    Get PDF
    To perform an epidemiological evaluation of the predictive value of p53 autoantibodies in breast cancer, we measured antibodies against p53 in serum samples from 165 breast cancer patients in comparison with serum samples from 330 healthy controls, selected from the same population as the cases and matched for age, sex and specimen storage time. Median age of patients was 51 years (range 25–64 years). Presence of serum p53 autoantibodies was analysed by enzyme-linked immunosorbent assay (ELISA) and confirmed by Western blotting. The lower ELISA reactivities were similar for cases and controls, but presence of high-level reactivity was more common among cases than among controls [odds ratio (OR) 9.03, 95% confidence interval (CI) 2.40–50.43]. Presence of Western blot-detected p53 autoantibodies had a very similar association (OR 10.8, CI 3.0–59.4). Among the cases, we also studied whether there was any correlation between level of anti-p53 antibodies and stage of the disease or survival. There was no significant correlation between presence of antibodies and stage of the disease. There was a significant negative correlation between presence of p53 antibodies and survival (P= 0.003). A stepwise multivariate Cox regression analysis showed that T-stage, age and presence of anti-p53 antibodies were significant independent prognostic variables, with a dose-dependent negative effect on survival for all three variables. We conclude that presence of anti-p53 antibodies are of significance both for the risk of having breast cancer and the risk of dying from breast cancer. 1999 Cancer Research Campaig

    Clinical significance of circulating anti-p53 antibodies in European patients with hepatocellular carcinoma

    Get PDF
    p53 alterations are considered to be predictive of poor prognosis in hepatocellular carcinoma (HCC) and may induce a humoral response. Anti-p53 serum antibodies were assessed by enzyme-linked immunosorbent assay (ELISA) using purified recombinant human p53 on 130 European HCC patients before treatment and during the clinical course of the disease. p53 immunohistochemistry was performed on tumours from the 52 patients who underwent surgery, and DNA sequencing analysis was initiated when circulating anti-p53 antibodies were detected. Nine (7%) HCC patients had anti-p53 serum antibodies before treatment. During a mean period of 30 months of follow-up, all the negative patients remained negative, even when recurrence was observed. Of the nine positive patients, eight were still positive 12–30 months after surgery. The presence of anti-p53 serum antibodies was correlated neither with mutation of the p53 gene nor the serum alpha-fetoprotein levels and clinicopathological characterics of the tumours. However, a greater incidence of vascular invasion and accumulation of p53 protein were observed in the tumours of these patients (P < 0.03 and P < 0.01 respectively) as well as a better survival rate without recurrence (P = 0.05). In conclusion, as was recently shown in pancreatic cancer, anti-p53 serum antibodies may constitute a marker of relative ‘good prognosis’ in a subgroup of patients exhibiting one or several markers traditionally thought to be of bad prognosis. © 1999 Cancer Research Campaig

    An overview of the teta - S correlations in Fram Strait based on the MIZEX 84 data

    No full text
    The water masses in Fram Strait have been analyzed on the basis of hydrographic casts taken in summer 1984 during the MIZEX 84 experiment. In particular, ξ − S diagrams for 16 areas, each 5◩ in longitude and 1◩ in latitude, covering the strait from 77◩N to 81◩ N are used to characterize the water masses and discuss their possible origin. Near the surface, the East Greenland Polar Front clearly separates the lighter, cold and fresh Polar Water (PW) from the heavier, warm and saline Atlantic Water (AW). In the upper ocean, the data show a large spreading of the temperature maximum in the ξ − S space associated with different modes of the AW recirculating southward below the PW. Two geographically distinct salinity minima are found in the intermediate layer below the AW. The denser one, in the Boreas Basin, is a feature typical of the Arctic Intermediate Water (AIW) formed by winter convection to the south of the strait, while the lighter one is sandwiched in the Arctic Ocean outflow between the AW layer and the Upper Polar Deep Water (UPDW) characterized by a downward salinity increase. In the deep layer, two salinity maxima are present. The shallower (and warmer) one, associated with the Canadian Basin Deep Water (CBDW), appears all along the East Greenland Slope. A similar but weaker maximum is also found in the southeastern part of the strait. This maximum is perhaps a remnant of the maximum in the East Greenland Current after it has been recirculated back to the strait around the cyclonic gyres of the Nordic Seas. The deeper one appears typically as a near-bottom salinity jump characteristic of the Eurasian Basin Deep Water (EBDW). The jump is found in two distinct areas of the strait, to the north-west in the Lena Trough and to the south-east in the rift valley of the Knipovich Ridge. The maximum in the former area should have been advected from the Arctic Ocean below the CBDW, while the maximum in the latter area might have originated from haline convection on the adjacent shelves. Some EBDW is trapped in the Molloy Deep over a denser water with salinity decreasing down to the bottom and temperature in the range of the Greenland Sea Deep Water (GSDW)

    Forcing of oceanic heat anomalies by air-sea interactions in the Nordic Seas area

    No full text
    International audienceHydrographic data and atmospheric reanalysis from 1982 to 2005 are used to show a strong link of the Atlantic water temperature (AWT) anomalies observed in the transition zone between the Norwegian Atlantic current and the West Spitsbergen current in summer to the surface heat flux (SHF) anomalies observed over the Barents Sea open water in the preceding late winter. A mechanism proposed for this link is formation of ocean temperature anomalies in a deep mixed layer and their subsequent westward export by a branch of Atlantic water recirculating in the western Barents Sea. The SHF anomalies over the Barents Sea are due to advection of temperature and humidity by anomalous winds across the Arctic ice edge and do not strongly depend on the North Atlantic oscillation (NAO). Correlations of up to about 0.9 between the AWT anomalies and indices of atmospheric variability over the Barents Sea open prospects for seasonal AWT predictability. It is also shown that the wind-forcing responsible for positive AWT anomalies is involved in a cyclonic perturbation of the atmospheric circulation over the Nordic Seas. This perturbation generates, through influence on the sea ice distribution, a lobe of SHF anomalies in the marginal ice zone (MIZ) on the eastern (Barents Sea) and western (Greenland Sea) sides of the Nordic Seas which has the opposite sign to the open water lobe. In contrast to the Barents Sea MIZ, the diabatic heating of the atmosphere by upward SHF anomalies in the Greenland Sea MIZ competes with cold advection
    corecore