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Abstract The predictability of the Arctic sea ice is

investigated at the interannual time scale using decadal

experiments performed within the framework of the fifth

phase of the Coupled Model Intercomparison Project with

the CNRM-CM5.1 coupled atmosphere–ocean global cli-

mate model. The predictability of summer Arctic sea ice

extent is found to be weak and not to exceed 2 years. In

contrast, robust prognostic potential predictability (PPP) up

to several years is found for winter sea ice extent and

volume. This predictability is regionally contrasted. The

marginal seas in the Atlantic sector and the central Arctic

show the highest potential predictability, while the mar-

ginal seas in the Pacific sector are barely predictable. The

PPP is shown to decrease drastically in the more recent

period. Regarding sea ice extent, this decrease is explained

by a strong reduction of its natural variability in the

Greenland–Iceland–Norwegian Seas due to the quasi-dis-

appearance of the marginal ice zone in the center of the

Greenland Sea. In contrast, the decrease of predictability of

sea ice volume arises from the combined effect of a

reduction of its natural variability and an increase in its

chaotic nature. The latter is attributed to a thinning of sea

ice cover over the whole Arctic, making it more sensitive

to atmospheric fluctuations. In contrast to the PPP assess-

ment, the prediction skill as measured by the anomaly

correlation coefficient is found to be mostly due to external

forcing. Yet, in agreement with the PPP assessment, a weak

added value of the initialization is found in the Atlantic

sector. Nevertheless, the trend-independent component of

this skill is not statistically significant beyond the forecast

range of 3 months. These contrasted findings regarding

potential predictability and prediction skill arising from the

initialization suggest that substantial improvements can be

made in order to enhance the prediction skill.

Keywords Arctic sea ice � Prognostic potential

predictability � Near term climate prediction � CMIP5 �
Decadal experiments

1 Introduction

Decadal climate prediction is a major issue in the devel-

opment of strategies for societal adaptation to the changing

climate. This new domain of research, initiated by societal

demand and enabled by recent achievements of ocean

reanalysis, goes beyond the simple production of confident

climate predictions. Still in its infancy, the achievement of

decadal prediction objectives requires, as a primary step, a

sufficient understanding of the mechanisms of interannual

to decadal variability of the climate system, as well as

improved simulations of those mechanisms in climate

models (Latif and Keenlyside 2011).

Predictability arising from initial conditions knowledge,

i.e. predictability of the first kind according to Lorenz

(1975) addresses the question of which long term evolving

variables have an impact on the characteristics of the

probability distribution function of shorter time scale
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events (from seasonal means to weather events). These

long-term evolving variables, as well as the physical

mechanisms leading to effects on shorter time scale, can be

seen as predictability sources. For near-term climate pre-

dictions, these long-term evolving modes need to be cor-

rectly phased with observations, implying a good

initialization. The ocean, characterized by strong inertia

and, more particularly, oceanic variability modes such as

the Atlantic Meridional Overturning Circulation (AMOC),

have been shown to be the major source of predictability in

the climate system (Griffies and Bryan 1997; Boer 2004;

Pohlmann et al. 2004; Knight et al. 2006; Solomon et al.

2011; Doblas-Reyes et al. 2011). Accordingly, initializa-

tion of the ocean state improves some aspects of climate

forecast (Smith et al. 2007; Pohlmann et al. 2009; Moc-

hizuki et al. 2010), especially in the North Atlantic sector

(Keenlyside et al. 2008; Garcia-Serrano et al. 2012; Yeager

et al. 2012; Doblas-Reyes et al. 2013). Sea ice, which is

strongly influenced by the ocean (Bitz et al. 2005), exhibits

multiannual time scale variability (Gloersen et al. 1996;

Deser et al. 2000; L’Hévéder and Houssais 2001; Ukita

et al. 2007), and has a strong impact on the surface

atmosphere and large-scale atmospheric circulation (Royer

et al. 1990; Alexander et al. 2004; Kvamstø et al. 2004;

Deser et al. 2004; Magnusdottir et al. 2004; Balmaseda

et al. 2010a; Bader et al. 2011; Orsolini et al. 2012), is

expected to play an essential role in decadal climate pre-

dictability. Its link with the ocean suggests that it is

potentially predictable up to several years, and because of

its impact on the atmosphere, especially at the ice edge, sea

ice predictability might, in return, be a source of predict-

ability for the polar climate.

The Arctic sea ice predictability has, until now, been

investigated mostly at the seasonal time scale, dominated

by the initial-value predictability. Most of analyses dealing

with the Arctic sea ice cover seasonal predictability are

based on statistical relationships (Walsh et al. 1980;

Johnson et al. 1985; Drobot and Maslanik 2002; Drobot

2007), giving relatively good prediction scores. It seems,

however, that non-observable variables–such as, for

example, sea ice thickness (SIT) distribution–appear to be

the best predictors of sea ice cover (extent or volume)

(Chevallier and Salas y Mélia 2012). Further, considering

the rapid changes in the Arctic environment, statistical

relationships may not remain valid in the future (Holland

and Stroeve 2011), justifying the increasing use of physical

models. Models can be used together with observations to

reconstruct the past sea ice cover and further investigate

statistical precursors of the sea ice (Lindsay et al. 2008;

Chevallier and Salas y Mélia, 2012), or be used individu-

ally to produce ensemble hindcast-forecasts (Blanchard-

Wriggleworth et al. 2011a; Holland et al. 2011; Chevallier

et al. 2013; Sigmond et al. 2013; Merryfield et al. 2013).

Note that previously mentioned reconstructions constitute

very good tools for initializing these hindcasts-forecasts.

Despite its relatively short prediction time scale, the sea-

sonal predictability is assessed (with statistical methods as

well as coupled model experiments) over several decade-

long periods, therefore exhibiting some long-evolving

trends. This raises the question of the impact of this trend,

due to changes in boundary conditions, on the total pre-

dictability assessment. For decadal prediction, this is even

more crucial. Indeed, initial values account for this trend

and complicate the assessment of the predicted trend in

response to the change in forcing during the hindcasts,

which constitutes a large part of the predictability.

Longer-term Arctic sea ice predictability has been

investigated using perfect model assumption, in which

Global Climate Models (GCMs) ensemble integrations are

initialized from a reference model integration (Koenigk

and Mikolajewicz 2009; Holland et al. 2011; Koenigk et al.

2012; Tietsche et al. 2013). These studies examined the

upper limit of initial-value predictability and its sensitivity

to the Arctic sea ice mean state (Holland et al. 2011),

which is an important issue in the observed rapidly

changing Arctic sea ice conditions. Koenigk and Mi-

kolajewicz (2009) found that the Arctic SIT annual mean is

predictable up to 2 years ahead while the annual mean sea

ice concentration (SIC) shows no predictability in the

ECHAM5-MPI-OM GCM. However, for the seasonal

mean, they found some significant predictability of the SIC

for a few months to 2 years in the Subarctic seas of the

Atlantic sector. In examining the monthly means of spa-

tially integrated indices, i.e. sea ice volume (SIV) and sea

ice area (SIA), Holland et al. (2011) found similar pre-

dictability time scales of 2 and 1 year, respectively, in the

CCSM3 GCM. Blanchard-Wriggleworth et al. (2011b)

found an even longer predictability time scale for both SIA

and SIV monthly means. They show that the sea ice cover

predictability is dominated by boundary-condition pre-

dictability rather than initial-value predictability beyond

3 years. The higher predictability of SIT, i.e. volume with

respect to that of sea ice concentration (i.e. area or extent),

found in all seasonal to interannual predictability studies

seems to disappear when considering longer time scales, as

shown by the very weak predictability of SIV, in contrast to

the highly predictable sea ice extent (SIE) found on decadal

means by Koenigk et al. (2012).

The Arctic SIA, SIE and SIV are indices that integrate a

large variety of regions influenced by different physical

mechanisms. Therefore, the understanding of their vari-

ability and predictability requires consideration at a smaller

spatial scale in order to highlight regional discrepancies. A

few studies have investigated the spatial distribution of the

sea ice cover predictability, concluding that the sea ice

cover is more predictable in the Atlantic sector than in the
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rest of the Arctic (Koenigk and Mikolajewicz 2009; Ko-

enigk et al. 2012). This higher predictability is attributed to

sea ice anomalies advection processes in the transpolar

drift stream impact area, i.e. the east Greenland current

(ECG) and the Labrador Sea (Koenigk and Mikolajewicz

2009) and to a stronger sea ice link with the ocean vari-

ability through the Atlantic meridional overturning circu-

lation (AMOC) in the Labrador, Greenland and Barents

Seas (Koenigk et al. 2012).

Due to incomplete climate state observations and model

errors, the perfect-model assumption gives only an upper

limit of the predictability, to which a good initialization

scheme and a good interannual to multi-decadal variability

simulation, as well as a correct response of the model to

external forcings, must be added in order to produce real

decadal climate forecasts. A decadal prediction protocol

has been designed within the framework of the fifth phase

of the Coupled Model Intercomparison Project (CMIP5) to

examine the ability of individual dynamical models to

simulate and predict decadal climate variability, and to test

the benefits and limitations of different initialization

schemes (Meehl et al. 2009; Taylor et al. 2012). No ini-

tialization technique was imposed to contribute to the

CMIP5 decadal exercise. Therefore, in addition to the

intercomparison of the predictability skills of coupled

models, CMIP5 decadal simulations should be individually

analyzed in detail in order to document the preliminary

issues previously introduced. Focusing on one of the

CMIP5 coupled models, the CNRM-CM5.1 AOGCM, this

analysis contributes to those objectives, addressing the

following questions:

• Assessment of the Arctic sea ice initial-value predict-

ability in the model.

• Identification of predictability sources of the Arctic Sea

Ice (where/why?)

• Time evolution of this potential predictability in a

changing climate.

• Assessment of prediction scores of the model initialized

with our specific method.

A detailed description of the simulations used in this

analysis is given in Sect. 2, with a brief description of

CNRM-CM5.1. Responses to previously mentioned ques-

tions are detailed in Sect. 3. Finally, results are summarized

and discussed in Sect. 4.

2 Description of the model and experiments

2.1 CNRM-CM5.1 coupled model

The simulations used in this analysis are performed with

the CNRM-CM5.1 atmosphere–ocean general circulation

model (AOGCM), which was developed jointly by CNRM-

GAME and CERFACS to contribute to the CMIP5 data-

base. A full description and a basic evaluation of the sys-

tem can be found in Voldoire et al. (2013).

CNRM-CM5.1 includes the global spectral atmospheric

model ARPEGE-Climat (v5.2), operated on a T127 trun-

cation (roughly 1.4� resolution in both longitude and lati-

tude). Land-surface processes and air-sea turbulent

exchanges are simulated through the SURFEX platform.

The ocean component is based on the ocean part of the

NEMO model. The ORCA-1� global tripolar quasi-isotro-

pic grid is used: its nominal horizontal resolution is 1�,

with a latitudinal refinement of 0.5� in the Arctic Ocean

and 0.3 along the equator. 42 vertical levels are used (10 in

the uppermost 100 m). The GELATO5 dynamic-thermo-

dynamic sea ice model is directly embedded into the ocean

component and uses the same horizontal grid. It includes

elastic-viscous-plastic rheology, semi-lagrangian advection

of ice slabs, ridging and rafting, parametrization of lead

processes, snow-ice formation, prognostic salinity, and an

advanced snow cover scheme which represents the effect

of snow ageing on snow density. In the present study, 4

thickness categories are used: 0–0.3, 0.3–0.8, 0.8–3.0, and

over 3 m. For the treatment of the vertical heat diffusion of

ice, every slab of ice is divided into 9 vertical layers, and

may be covered with one snow layer. All components are

coupled through the OASIS(v3) system (Valcke 2006).

2.2 Experimental design

2.2.1 Historical simulations (HIST)

To investigate the added value of the ocean initialization

on the decadal predictability and prediction, we use, for

comparison, CMIP5 historical experiments (Taylor et al.

2012), performed with CNRM-CM5.1. Ten members have

been computed for the period 1850–2012. They differ in

their initial conditions, taken from different dates of the

1000-year control simulation under preindustrial conditions

performed with the model. The internal variability of those

historical simulations is not synchronized with observa-

tions. They will therefore be referred to as ‘‘non-initial-

ized’’ experiments in contrast with decadal simulations.

The sea ice cover simulated by CNRM-CM5.1 is par-

tially described in Voldoire et al. (2013). The Arctic geo-

graphical distribution of sea ice has been shown to be

correctly simulated, especially in winter, despite a slight

overestimation of 1.1 9 106 km2 of the total Arctic SIE

(Table 1) over the period 1979–2008. This bias comes

from an overestimation of sea ice concentration in the Sea

of Okhotsk and east of the Kuril Islands (Voldoire et al.

2013). During the summer, the total Arctic SIE is under-

estimated due to spurious loss in the eastern part of the
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Siberian Basin. The comparison of simulated SIT with

the Pan-Arctic-Ice-Ocean-Modeling-System (PIOMAS)

(Zhang et al. 2008; Schweiger et al. 2011) highlights a

strong negative bias, especially north of Greenland. As a

consequence, sea ice transport through the Fram Strait is

underestimated by 42 % when compared to observational

estimations by Kwok et al. (2004).

2.2.2 Decadal hindcasts (DEC)

Analyses of the sea ice predictability in this paper are based

on a set of ten-year-long, ten-member ensemble decadal

hindcasts performed within the framework of CMIP5

(Taylor et al. 2012) with CNRM-CM5.1. Hindcasts were

initialized on January 1st of every 0, 1, 5 and 6 calendar

years of a given decade spanning the 1960–1996 period,

which corresponds to 16 start dates. The choice to limit our

analysis to this period is based on the 1958–2008 coverage

period of the target used as a reference for prediction skill

assessment. Hindcasts starting after 2000 cannot be com-

pared to the reference for the whole integration period and

are therefore treated as forecasts. For a given start date,

members share the exact same ocean/sea ice initial state,

while that of the atmosphere/land differs. The latter are

randomly selected during January. This set of decadal

hindcasts will henceforth be referred to as DEC.

Initial states are extracted from a coupled experiment,

hereafter referred to as NUD, performed with the same

coupled model, in which the ocean temperature and salinity

are nudged towards the full fields from the ECMWF ocean

reanalysis NEMOVAR–COMBINE (Balmaseda et al.

2010b). This reanalysis was performed with the same

NEMO version at the same horizontal and vertical reso-

lution as in CNRM-CM5.1. The constraint consists of a 3D

Newtonian damping toward the NEMOVAR–COMBINE

temperature and salinity with a vertical dependence of the

relaxing time-scale ranging from 10 days below the mixed

layer to 360 days at the bottom of the ocean. No nudging is

applied within the mixed layer, and the sea surface tem-

perature and salinity are restored through flux formulation

with coefficients equal to -40 W m2 K-1 and

-167 mm day-1, respectively. The 3D damping is applied

outside a broad equatorial band (15� latitude) in which the

subsurface is free to evolve while the surface restoring is

active everywhere. No constraint is applied directly to sea

ice, atmosphere and land. This preliminary experiment

aims to produce ocean initial states compatible with the

observations and the model mean state. The use of NUD,

performed with the same coupled model as DEC, allows us

to initialize all dynamical and thermodynamical sea ice

variables, especially those related to the four ice categories

of the GELATO model.

Table 1 presents the evaluation of Arctic sea ice simu-

lated by NUD and HIST. We used the National Snow Ice

Data Center (NSIDC) sea ice index (Fetterer et al. 2002) as

a reference for SIE. As no equivalent long-term and spatial

sample observations of the SIT exist, the SIV is compared

to the PIOMAS SIV reconstruction time series (Zhang

et al. 2008; Schweiger et al. 2011), which stands as a ref-

erence in Arctic SIV reconstruction. This evaluation is

Table 1 Bias and correlation coefficients of the simulated Arctic SIE and SIV by NUD and HIST, as well as observed Arctic SIE by the NSIDC

Bootstrap (BT) algorithm dataset

Bias R R (detrended)

March Sept. March Sept. March Sept.

NUD

SIE -0.34 -1.56 0.85 (p \ 0.001) 0.91 (p \ 0.001) 0.52 (p = 0.003) 0.74 (p \ 0.001)

SIV -7.01 -9.02 0.86 (p \ 0.001) 0.80 (p \ 0.001) 0.32 (p = 0.008) 0.15 (p = 0.43)

HIST

SIE 1.10 -1.21 0.81 (p \ 0.001) 0.80 (p \ 0.001) – –

0.69 -1.55 -0.31 (p = 0.1) 0.36 (p = 0.05) – –

1.78 -0.85 0.86 (p \ 0.001) 0.77 (p \ 0.001) – –

SIV -5.20 -8.67 0.89 (p \ 0.001) 0.85 (p \ 0.001) – –

-5.97 -9.45 0.52 (p \ 0.003) 0.49 (p = 0.006) – –

-4.44 -8.15 0.89 (p \ 0.001) 0.84 (p \ 0.001) – –

BT

SIE ?0.14 ?0.34 – – – –

All the computation are done referring to the NSIDC NASA Team algorithm dataset for SIE, and the PIOMAS reconstruction for SIV. Both

reference time series are available over the period 1979–2012. All coefficients are computed over the overlapping time period; that is, 1979-2008.

SIE bias is expressed in millions of km2, SIV bias is expressed in 1000 km3. For HIST, the first row corresponds to the ensemble mean, followed

by minimum and maximum values obtained for individual member computation
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performed on datasets overlapping period, namely

1979–2008. Clearly, the sea surface temperature and

salinity restoring impose a strong constraint on sea ice edge

position during winter, leading to a SIE very close to

observations. This indirect constraint is no more efficient

during summer, when a negative bias in SIE is observed, in

accordance with the free coupled model mean state. In

contrast, the ocean surface restoring does not impose any

constraints on SIT, giving free rein to the known intrinsic

underestimation of SIV in CNRM-CM5.1 (Voldoire et al.

2013). Accordingly, a very strong negative bias is found in

SIV during both winter and summer. During winter, this

bias is even stronger than in the free coupled model, due to

the correction of the CNRM-CM5.1 SIE overestimation

(Voldoire et al. 2013) mentioned previously. The winter

and summer downward trends of both SIE and SIV are

correctly represented, as shown by the correlation coeffi-

cients of interannual time series. The NUD simulation also

performs well in reproducing the interannual variability

around the trend for the SIE, with significant correlation

coefficients of the detrended time series in both winter and

summer. On the other hand, it clearly fails to reproduce the

Arctic SIV interannual variability around the linear trend.

In conclusion, the sea ice initial states provided by NUD

are close to observations in terms of SIE, but strongly

underestimate the SIV, which is much closer to the free

coupled model attractor.

All external radiative forcings (natural and anthropo-

genic) are the same in all simulations, following the

CMIP5 historical protocol until 2005 and the RCP8.5

scenario thereafter. The use of the same coupled model for

all 3 sets of experiments (NUD, DEC, and HIST) is clearly

one of the strengths of this analysis, as no uncertainties

arise from the model version when comparing datasets.

3 Results

3.1 Prognostic potential predictability

DEC ensemble members which share the same ocean/sea

ice initial state diverge as the forecast range increases due

to the chaotic nature of the climate system. The DEC

ensemble spread (rd) increases accordingly and a measure

of the predictability relies on the comparison of the latter to

an estimation of the natural variability of the system (rh).

Predictability is assumed when the former is smaller than

the latter, following the so-called prognostic potential

predictability (PPP) approach (Pohlmann et al. 2004;

Koenigk and Mikolajewicz 2009) defined as:

PPP ¼ 1� rd

rh

In most studies, the expected spread due to natural vari-

ability is assessed using stationary control run integrations

(Pohlmann et al. 2004; Koenigk and Mikolajewicz 2009;

Holland et al. 2011). As DEC start dates span several

decades and climate conditions change rapidly, especially

over the Arctic, we decided to use the HIST ensemble

spread to obtain an estimate of the spread associated with

the natural variability of a given year. HIST is preferred to

a pre-industrial control run because it accounts for changes

in natural variability, which are crucial in the Arctic. Note

that HIST ensemble spread is computed on the exact same

date as DEC, meaning that for each start date and forecast

range, it is computed as the ensemble member standard

deviation of the prediction date. Figures 1, 3, 4, 5 and 6

show ensemble spread as a function of lead time for both

DEC (in red) and HIST (in black) simulations for several

physical quantities with a seasonal distinction. Those

spreads are averaged over all start dates, thus giving an

evaluation of the ‘‘mean’’ PPP over the second half of the

twentieth century. A zero spread of DEC simulations cor-

responds to a perfectly predictable system (no divergence

of the ensemble members at the given time). Conversely, a

spread equal to HIST spread implies no predictability

coming from ocean/sea ice initialization. The null

hypothesis that the two spreads are indistinguishable is

tested according to a Fisher test at 95 % level with

Nsd*(Nmb - 1) - 1 degrees of freedom, where Nsd is the

number of start dates and Nmb is the number of members.

Significantly distinguishable spreads are indicated in full

circles in Figs. 1, 3, 4, 5 and 6. In those figures, we can see

small variations of the HIST ensemble spread with the

forecast range. Those variations could be externally forced

by brief events such as volcanic eruptions or, as will be

shown in the following section for regional indices, by the

long-term GreenHouse Gases (GHGs) evolution. In addi-

tion to these effects, uncertainties due to the HIST

ensemble size may lead to small variations. These uncer-

tainties can be reduced by averaging this spread over

several years.

Unlike HIST, the DEC ensemble spread might depend

on how the ensemble is generated (Du et al. 2012). The

generation ensemble methodology and its impact on pre-

dictability and prediction skill is a main issue of near-term

climate prediction but is not the focus of this paper. Nev-

ertheless, a very short analysis testing our atmospheric-

only perturbation against an atmosphere–ocean perturba-

tion technique performed on a few start dates (not shown)

leads us to conclude that atmospheric-only perturbation

was sufficient to generate the Arctic SIE and SIV ensemble

spread, though it gives an upper limit of potential pre-

dictability. Note that this PPP measure addresses initial-

value predictability only. The lead time is from 0 for the
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year of the initialization to 9 for the tenth year of simula-

tion. Therefore, lead time 0 year corresponds to a lead time

of 3(9) months for March (September) SIE and SIV.

3.1.1 Global Arctic

March global Arctic SIE ensemble spread (Fig. 1a) for

DEC is lower than for HIST up to 6 years, suggesting that

there is some memory of initial conditions during the first

years of forecast. The same conclusion can be drawn for

March SIV (Fig. 1c), which exhibits a significant PPP up to

a lead time of 8 years. The summer sea ice cover seems to

be much less predictable (Fig. 1b, d) in terms of PPP, with

September SIE showing no significant predictability after

the first 3 years of integration. Summer SIV shows some

predictability up to 4 years and suggests predictability up

to 6 years.

In the Arctic, the transition zones between the interior

ice pack and the open ocean, known as Marginal Ice Zones

(MIZ), capture most of the seasonal and longer term SIC

variability. During winter, the Arctic SIE and Arctic SIA

interannual variability arises from the MIZ, present in all

peripheral seas. This is highlighted by the interannual SIC

standard deviation distribution of the historical simulations

(Fig. 2a). Thus, understanding of the Arctic sea ice cover

predictability requires a regional approach because of the

different driving mechanisms of variability at work, which

depend on location. These peripheral seas also play an

important role in Arctic SIV variability, as shown by

interannual SIT standard deviation (Fig. 2b). However, in

contrast with SIC, SIT exhibits some interannual variability

in the ice pack, showing that the interior basin should not

be neglected when explaining Global Arctic SIV variability

and predictability. As Arctic sea ice cover is confined to the
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Fig. 1 Ensemble standard deviation of a March SIE b September SIE

c March SIV, and d September SIV for DEC experiment (in red) and

HIST experiment (in black). The standard deviation of each lead time

is averaged over all start dates. Years for which HIST ensemble

variance is significantly higher than the DEC ensemble variance

according to a fisher test at 95 % confident level are indicated in full

circles
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Central Arctic during summer, we limit the following

regional investigation to the winter season.

3.1.2 Regional sea ice cover

The winter SIC of the marginal seas exhibits a covariability

known as the double dipole pattern (Walsh and Johnson

1979; Fang and Wallace 1994; Deser et al. 2000), which is

linked to the North Atlantic Oscillation (NAO). This link

associates positive (negative) SIC anomalies in the Lab-

rador and Bering Seas (Nordic and Okhotsk Seas) with a

positive NAO phase (Deser et al. 2000; Ukita et al. 2007).

Superimposed on the large scale covariability of the North

Hemisphere sea ice, regional contrasts between peripheral

seas have been also identified over the full historical period

(Mysak and Manak 1989) and the more recent period of

satellite observations (Parkinson et al. 1999). Bitz et al.

(2005) identified a strong influence from solar radiation as

well as the convergence of heat transported by the ocean on

the ice edge position. The latter process differs significantly

from one marginal sea to the other, as it is influenced by the

fluctuations of different water masses. For example, Sch-

lichtholz (2011) identified a strong control of the Nordic

Seas winter SIA by the summer temperature in the Atlantic

water core in the Barents Sea opening area. Those

regionally contrasted oceanic influences are expected to

play a crucial role in sea ice cover predictability.

In this section, we investigate regional PPP in six

regions, shown in Fig. 2c. The three Atlantic sector

regions, namely the Labrador, Greenland-Iceland-Norwe-

gian (GIN) and Barents Sea regions, along with the Pacific

sector region of the Bering Sea, correspond to the NSIDC

regional index computation domains (Parkinson et al.

1999; Parkinson and Cavalieri 2008). The Okhotsk Sea

region is chosen larger than the NSIDC computation

domain in order to be more consistent with the Pacific MIZ

distribution in CNRM-CM5.1, which is displaced slightly

southward compared to observations (Voldoire et al.,

2013). Finally, we consider the Central Arctic domain in

order to investigate the significant SIT variability there.

The evolution of SIE ensemble spread as a function of

lead time and domain highlights strong regional constrasts

in PPP (Fig. 3). The most striking result occurs for the GIN

Seas SIE, which exhibits some significant PPP up to

9 years lead time, 3 years longer than the Global Arctic

SIE PPP. Moreover, the fact that the GIN SIE DEC

ensemble spread never catches up with the HIST ensemble

spread suggests some predictability beyond the 10 years of

simulation. The same conclusion can be drawn for the

Labrador Sea. Note, however, that the Labrador SIE vari-

ability is underestimated in CNRM-CM5.1 (not shown),

suggesting that some key processes that might affect the

PPP might be not correctly simulated in this region. In

comparison, other marginal seas exhibit a very low initial

value predictability limit, equal to 1 year at most, sug-

gesting that the winter Arctic SIE PPP comes mostly from

the Atlantic sector, and more specifically from the GIN

Seas.

Similar conclusions can be drawn from the regional

SIV (Fig. 4). Indeed, the GIN and Labrador Seas exhibit

SIV PPP limits quite similar to the Global Arctic SIV

PPP limit, while the Bering and Okhotsk Seas show no

(a) (b) (c)

Fig. 2 Historical interannual standard deviation map of March a sea ice fraction and b sea ice thickness (in m), over the period 1958–2005. This

standard deviation is computed for each member, and then averaged over the ensemble. c Location map of the regions used in the analysis
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SIV PPP beyond a lead time of 2 years. Note that,

although not significant beyond 2 years, the Barents Sea

SIV exhibits some PPP up to 4 years, although it cannot

be identified at all on SIE. SIV shows some significant

PPP in the Central Arctic domain of the order of 8 years

(Fig. 4d). The Global Arctic SIV PPP thus comes mostly

from the central Arctic domain, as well as the Atlantic

domain. The Pacific sector shows very weak predict-

ability. Those results are in accordance with Koenigk and

Mikolajewicz (2009).
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Fig. 3 March regional SIE ensemble standard deviation for a the GIN Seas, b the Labrador Sea, c, the Barents Sea, d the Central Arctic, e the

Bering Sea, and f the Okhotsk Sea. Regional domain locations are shown on Fig. 2c
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3.1.3 Period dependence of the PPP

As mentioned at the beginning of this section, DEC start

dates span several decades where rapid climate condition

changes occur, implying the need to take into account

changes of internal variability in the PPP estimation. In this

section, the period dependence of PPP is evaluated. We

separate the 16 start dates into two disjoint sets: the first
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Fig. 4 March regional SIV ensemble standard deviation for a the GIN Seas, b the Labrador Sea, c, the Barents Sea, d the Central Arctic, e the

Bering Sea, and f the Okhotsk Sea. Regional domain locations are shown on Fig. 2c
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containing the 8 start dates prior to 1979, and the second

the most recent 8 start dates after 1979. This split is con-

strained by the limited number of available start dates and

the need for sufficient sampling in order to obtain statisti-

cally significant conclusions.

Repeating the previous analysis on both disjoint periods

leads us to conclude that the winter Arctic SIE and both

winter and summer Arctic SIV have less predictability due

to initialization in the recent period than during the

1960–1979 period (not shown). The summer Arctic SIE,

which already exhibited poor predictability in the analysis

of the whole period (Fig. 1b) shows no PPP variation

between the two periods. The most striking PPP differences

between the two periods occur for the GIN Seas SIE

(Fig. 5). In this region, when we restrict the PPP

assessment to the start dates prior to 1979, SIE is highly

predictable due to initialization during the 10 years of

hindcast (Fig. 5a) while the PPP limit drops to 6 years

when considering the period after 1979 (Fig. 5b), and the

difference between HIST and DEC spread is much weaker

beyond the first 3 years. No similar PPP sensitivity can be

identified in other Arctic regions (not shown), suggesting

that the PPP variation identified on Arctic SIE comes

mostly from the GIN Seas. Note, however, that the Lab-

rador Sea SIE shows opposite PPP variations, with higher

potential predictability in the recent period. The same

results are found for SIV in both domains. Additionally, the

Central Arctic and Barents Sea SIV PPP behave similarly

to the GIN Seas PPP, with weaker initial-value predict-

ability after 1979 (Fig. 6).
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Fig. 5 Ensemble standard deviation of the GIN Seas March SIE considering only a the 8 start dates prior to 1979, and b the 8 start dates after

1979
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Fig. 6 Ensemble standard deviation of the central Arctic March SIV considering only a the 8 start date prior to 1979, and b the 8 start dates after

1979
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The decrease of the GIN Seas PPP for both SIV and SIE

in the recent period is not associated with a faster diver-

gence of DEC ensemble members, but comes from a

decrease of internal variability captured by the decrease of

HIST ensemble spread between the two periods (Fig. 5b

compared to Fig. 5a). As discussed by Goosse et al. (2009),

a reduction of mean state could explain a linear decrease of

the variance. However, the decrease found in HIST is

strongly non-linear, with a first drop occurring around 1986

and a second around 2000 (Fig. 7). These drops in both SIE

and SIV variance between HIST members are not associ-

ated with drops in mean state, as would be expected if the

simple model of Goosse et al. (2009) could be applied here.

To understand this non-linearity, the ocean water masses

distribution and their impact on sea ice cover in this region

are now documented. The two surface oceanic fronts,

namely the Arctic front separating the so-called Arctic

Intermediate Water of the interior of the Greenland Sea

from the warm Atlantic water to the east, and the polar

front separating the cold and fresh polar water to the west,

strongly influence the sea ice distribution (Swift 1986;

Comiso et al. 2001). The Arctic and Polar fronts delimit

three areas exhibiting contrasted SIC distribution and var-

iability (Comiso et al. 2001; Germe et al. 2011). The first,

west of the polar front and coinciding more or less with the

East Greenland shelf, is characterized by highly compact

sea ice cover and weak interannual variability. The second,

between the two fronts, is covered by less compact, but

much more variable, ice cover. The last, east of the Arctic

front, is never covered by sea ice as the result of the

influence of warm Atlantic water. These three regions will

be referred to hereafter as ‘‘Polar,’’ ‘‘Arctic,’’ and

‘‘Atlantic’’ areas respectively, following the Swift (1986)

denomination. This spatial pattern–that is, the two fronts,

as well as the corresponding contrasted sea ice cover areas–

is well simulated in CNRM-CM5.1 despite a slight shift

toward Iceland, as shown by the mean sea surface tem-

perature distribution (Fig. 8) and the SIC variability on

Fig. 2a. In light of the context of oceanic influence, the

drop in SIE variance that occurs in 1986 obviously comes

from the quasi-disappearance of sea ice in the ‘‘Arctic

area,’’ as shown by the 15 and 95 % sea ice concentration

contour positions on Fig. 8a, b. The second drop is due to

the delayed disappearance of sea ice cover in this area for

two HIST members. With no sea ice cover in the Arctic

area, the GIN Seas sea ice cover is reduced to the Polar

area, where the constant influence of polar water prevents

strong interannual variability of the sea ice concentration.

The sea ice concentration variability therefore mostly

comes from slight variations in the polar front position,

which does not have a significant impact on the total GIN

Seas SIE and SIV. This narrowing of Greenland Sea MIZ

has been observed and described by Strong (2012) using

the NSIDC satellite dataset, showing that this changing

state is not limited to our climate model but is noticeable in

observations. No such narrowing of the GIN Seas MIZ

could be identified in DEC in accordance with the similar

spread behavior for the two periods. DEC seems to be

attracted by a ‘‘colder’’ state than HIST. This might come

from a lower climate sensitivity of DEC experiments as

suggested by Meehl and Teng (2012). In any case, the GIN

Seas MIZ in DEC remain in a mean state close to the HIST

pre-1986 state. This large MIZ in DEC, which is not

associated with a fast divergence of ensemble members,

supports the hypothesis of a high sea ice cover potential

predictability in this area.

For the central Arctic domain, the decrease of winter

SIV PPP between the earlier and more recent periods is
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Fig. 7 GIN Seas a SIE and b SIV time series derived from HIST. The solid line represents ensemble mean, while the shaded area represents the
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partially explained by the faster rate of divergence of DEC

members together with the decrease of internal variability,

which is also a contributing factor. In contrast to the GIN

SIE, this decrease is more or less regular and shows no

strikingly abrupt drop (not shown). As the Central Arctic is

completely covered by sea ice during winter, with no

reduction of SIE, the reduction of SIV variability is only

due to a reduction of SIT variability. Interestingly, the

pattern of the trend of the SIT spread differs from that of

the SIT trend (Fig. 9). The SIT trend is negative in the

whole Arctic domain (Fig. 9a), while the trend of the SIT

spread is less homogeneous (Fig. 9b). In the Bering Sea, as

well as the Barents Sea, regional dipoles mark a shift of the

MIZ associated with the shift of the sea ice edge position.

By construction, variance disappears where the sea ice

disappears, while the variance increases in the new MIZ

area. In the GIN Seas, as already mentioned, the MIZ is

reduced rather than shifted, explaining the absence of a

dipole. In the central Arctic domain, the decrease is max-

imal near the Siberian coast and weakened when moving

toward the pole. An increase is observed near the Green-

land and Canadian Archipelago, although not significant at

the 95 % level. The dipolar pattern between Laptev/East

Siberian Seas and north of Greenland cannot be associated

with a similar dipole in the SIT trend, showing that the

evolution of the spread cannot be explained by thickness

evolution alone. Moreover, the decrease of SIT in the

Central Arctic is not sufficient to affect the variance by the

proximity of the zero boundary. In addition, stronger

spread decrease and increase both occur in areas covered

by thick ice, suggesting that dynamical processes are

involved in these spread variations. But the explanation of

this variability changes has yet to be understood. The

thinning of the sea ice cover in the Central Arctic can

explain the faster rate of divergence of DEC members in

the more recent period in comparison to the earlier one by a

stronger sensitivity of sea ice cover to atmospheric fluc-

tuations, as discussed by Holland et al. (2011).

3.2 Prediction skills

In order to quantify the hindcasts’ skill in capturing the sea

ice cover evolution, we use the so-called Anomaly Corre-

lation Coefficient (ACC) skill score defined as:

ACC tð Þ ¼
P16

j¼1 DECanom j; tð Þ � REFanom j; tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP16

j¼1 DECanom j; tð Þ2
P16

j¼1 REFanom j; tð Þ2
q

where t is the lead time and j is the start date. Anomalies

are computed relative to the 1958–2008 period. DEC skill

scores are compared with those of HIST in order to high-

light the added value of ocean/sea ice initialization on

predictions. Recall that all external forcing and model

components are identical; the differences between DEC

and HIST thus arise purely from initialization. Note that for

DEC predictions, some skill arises from the trend present in

initial conditions, in addition to the direct and instanta-

neous climate response to evolving forcings. Therefore, we

look at the ‘‘residual’’ skill associated with internal ocean/

sea ice variability, obtained by removing the long-term

trend, following the approach of Oldenborgh et al. (2012).

This trend is computed by linear regression on CO2 con-

centration evolving time series. The sensitivity of the ACC

to the detrending technique has been analyzed by

(a) (b)

Fig. 8 Averaged March SST (in �C) map derived from HIST ensemble mean over a the 1960–1986 and b 1987–2005 periods. 0.15 and 0.95 sea

ice fraction contours are show in bold black lines
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comparing our definition of the trend to the use of a 2nd

order polynomial fit. No significant impact of the detr-

ending method on the ACC has been identified except for

winter total Arctic indices. For those indices, the ACC are

slightly overestimated by our method. However, the higher

sensitivity of the polynomial fit to the sampling leads us to

reject this technique. Due to the lack of observed SIV time

series and uncertainties in SIV PIOMAS reconstruction

(Schweiger et al. 2011), we use NUD as a target for all the

ACC computations, including those of SIE, in order to be

consistent. Note that NUD is biased against observations

(Table 1). Therefore, ACC, as presented here, does not

perfectly reflect the prediction skill (i.e. correspondence

between forecast and observations) of our model. DEC and

HIST ACC are computed from ensemble mean. Before

ACC computation, the model drift is removed following

the CLIVAR recommendations relevant for full field ini-

tialization (CLIVAR 2011).

3.2.1 Global Arctic

Figure 10 shows global Arctic sea ice indices ACC with

(solid lines) and without (dashed lines) trend, for DEC (red

lines), HIST (black lines) and persistence (blue lines).

Here, persistence prediction is taken as the March (Sep-

tember) anomaly (in NUD) of the year before the initiali-

zation date for March (September) prediction at a given

lead time. For all indices, DEC exhibits significant scores

up to a lead time of 10 years. However, HIST ACC of a

similar order of magnitude, obtained before detrending,

show that those skills are mostly due to external forcing.

This is confirmed by the much lower skill of the hindcasts

once the linear regression on the CO2 time series has been

removed. No added value from the initialization can be

identified except for the first lead time (3 months lead time

indicated as lead time 0 year on the Fig. 10) of winter SIV,

and, to a lesser extent, the winter SIE.

Considering the persistence predictions of summer sea

ice indices, the rather constant scores with lead time before

detrending, in addition to the insignificant scores after

detrending, suggest that this persistence prediction skill

comes purely from the trend. Indeed, in summer, this long-

term trend is substantial when compared to natural vari-

ability (83 % of the variance for SIE as well as SIV in

NUD) and is present in the initial conditions in both DEC

and HIST. Remember that the latter is not synchronized

with observations in terms of internal variability and

therefore is not initialized in that sense (see Sect. 2.2). A

similar conclusion can be drawn for winter SIV, for which

the linear trend explains 80 % of the variance. In contrast,

for winter SIE, the externally forced linear trend explains

only 48 % of the total variance. The winter SIE persistence

ACC varies with lead time and is not very sensitive to

detrending. This suggests that those scores come from a

memory of the system and not purely from the trend.

The weak PPP of the summer Arctic sea ice cover

identified in Sect. 3.1.1 is in accordance with the lack of

prediction skill found here after detrending. In contrast, the

(a) (b)

Fig. 9 Linear trend of a sea ice thickness HIST ensemble mean, and

b sea ice thickness HIST ensemble spread. The ensemble spread is

taken as one standard deviation. The trend is expressed in m per

decade. Black dots indicate the position where the trend is significant

at the 95 % confident level
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low ACC of detrended winter SIE, and even more of winter

SIV compared to the significant PPP previously mentioned,

show that strong improvements could be made. Those

improvements would require a better initialization and

simulation of sea ice variability driving mechanisms.

Finally, one can notice an oscillatory behavior of ACC

along the forecast time axis with a period around

4–5 years. This is most striking for the winter SIV. It

comes from the start date sampling and does not reflect a

physical reemergence of skill. For example, if an event of

strong anomaly appears in the target NUD in a given

year, but is not predicted by HIST or DEC, the ACC will

be weakened at lead times that take into account this

peculiar year. Due to the start dates sampling, those lead

times will be distributed as n, n ? 1, n ? 4 and n ? 5.

One can have the opposite case of strong anomaly in

DEC and HIST (for example, due to a volcanic eruption

such as the Pinatubo in 1991) that does not appear in

NUD. In that case, the ACC will be impacted in the same

way for HIST and DEC, while the persistence will not be

impacted. For winter SIV ACC, the oscillations can be

explained by the combined effects of the Pinatubo

eruption and a strong positive anomaly event in 1970s (in

NUD) which is not predicted by HIST or DEC. This is

highlighted by the number of ‘‘polluted’’ points (i.e. the

points impacted by the Pinatubo eruption or the 70 s SIV

anomaly) taken into account for the ACC computation,

indicated by the purple line in Fig. 10c. This recurrence

of a single event signal on ACC at different forecast

range was already observed by Garcia-Serrano and

Doblas-Reyes (2012) on ACC of surface atmospheric

temperature for the occurrence of ENSO events. Note

that for persistence, in addition to the ‘‘polluted’’ pre-

dicted years, the lead time predicted by these peculiar
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Fig. 10 Anomaly correlation coefficients (ACC) of a March SIE,

b September SIE, c March SIV, and d September SIV for Decadal

experiment (in red), Historical experiment (in black) and persistence

evaluated from NUD (in light blue). Solid and dashed lines

correspond to anomalies from the mean and long evolving trend,

respectively. The trend is assessed by a linear regression onto the CO2

concentration external forcing time series. In c the purple dotted line

corresponds to the number of years impacted by the Pinatubo eruption

or a strong SIV anomaly in the 70 s in NUD (i.e. years included in the

following list: 1977, 1978, 1979, 1993, 1994, 1995) taken into

account in the ACC computation
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events will also be impacted. Therefore the purple line

does not perfectly reflect the impact of those events on

the persistence computation.

3.2.2 Regional sea ice cover

As could be expected from the previously documented PPP

discrepancies, regional prediction scores are higher in the

Atlantic than in the Pacific sector (not shown). However,

even in the Atlantic subdomains, no significant scores are

obtained beyond 2 years. For the SIE, the best prediction

scores are obtained for the GIN Seas domain (Fig. 11a).

DEC ACC are higher than those of HIST for the first three

lead times, which suggests some added value of the ini-

tialization. Those ACC are much weaker after detrending.

However, the fact that they remain positive and higher than

the persistence ACC, in addition to the large PPP of this

region identified in the previous section, gives some con-

fidence about the usefulness of the DEC protocol. Beyond

3 years, HIST’s ACC exceed those of DEC, showing that

there is no improvement (and even possible degradation)

from the initialization at those lead times. Higher scores for

DEC compared to HIST are also found for the two first lead

times of the Labrador and Barents SIE, and the first lead

time (lead time 0 year) of the Bering Sea (not shown). For

those regions, the scores are not strongly affected by the

detrending, which again increases confidence in added

predictive skills coming from the initialization.

The GIN Seas SIV ACC exhibit the same overall

behavior as those of the SIE (Fig. 11b); i.e., rather constant

and significant HIST ACC with lead times, again showing

some prediction skill coming from boundary condition

changes, but higher DEC ACC up to 1 year lead time, with

or without detrending. The best prediction skill of the SIV

is obtained for the central Arctic domain (Fig. 12). In that

case, the comparable ACC of HIST and DEC clearly

suggest that those skills come purely from the boundary

condition changes. However, despite a strong decrease

after detrending, DEC exhibits positive and higher ACC

than HIST for lead times exceeding 3 years. This high-

lights a possible delayed added value of the initialization

that could come from a delayed impact of the ocean ini-

tialization on the SIT in the central Arctic.

Although insignificant, the Labrador Sea exhibits very

interesting ACC (Fig. 13). Indeed, especially for SIV, DEC

ACC are much higher than those of HIST for the first lead

times. Those ACC remain nearly unchanged after detr-

ending, which clearly shows an added value of the ini-

tialization at those lead times. In contrast, after the first

DEC ACC drop, for lead times exceeding 6 years, DEC

and HIST ACC rise together for SIV (and to a lesser extent
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for SIE for lead time exceeding 7 years). These long lead

time skill disappears after detrending, showing that the

recovered prediction skill comes from the boundary con-

ditions. The Labrador sea SIV trend is strongly non linear

and affects much more the recent period from the 90 s in

both DEC and HIST. As the last DEC initial date starts in

1996, this trend is only captured by the last lead times,

hence explaining the rise of the skill.

4 Conclusion and discussion

Based on the CMIP5 protocol for decadal experiments, the

prognostic potential predictability (PPP) of the Arctic sea

ice at interannual timescale was investigated in the CNRM-

CM5.1 model. The standard CMIP5 historical twentieth

century experiment performed with the same coupled

model was also used to investigate the added value of the

ocean initialization for the sea ice interannual potential

predictability and prediction skill. Our results show that the

CNRM-CM5.1 Arctic SIE (SIV) PPP is significant for

approximately 6(8) years and 2(4) years for winter time

and summer time, respectively. The interannual predict-

ability of Arctic sea ice beyond 2 years’ lead time has been

poorly investigated so far. The SIE was found to be

potentially predictable for a shorter time in summer than in

winter, in accordance with the findings of Holland et al.

(2011) for SIA, although the potential predictability was

found to be longer in our model. The long time scale of

potential predictability found for SIV is in accordance with

previous studies, which showed that the winter SIT is

predictable for at least 2 years on annual mean (Koenigk

and Mickolajewitz 2009) and for both winter and summer

(Holland et al. 2011). However, as for SIE, the SIV

potential predictability in CNRM-CM5.1 is very long

compared to the findings from those previous analyses.

This predictability time scale depends partly on the gen-

eration ensemble technique, along with the chosen metric,

and further analysis investigating the sensitivity of our

results to those aspects would be useful.

We found that the potential predictability of the winter

Arctic SIE comes predominantly from the Atlantic sector,

especially from the GIN Seas, while the Pacific sector

seems unpredictable beyond the first year. In addition to

the Atlantic Sector, the Central Arctic also plays a sub-

stantial role in total Arctic SIV potential predictability. The

contrasted potential predictability of sea ice between the

two oceanic sectors has been observed in other coupled

models, such as ECHAM5/MIP-OM (Koenick and Mick-

olajewitz 2009), and EC-Earth (Koenigk et al. 2012). This

is in accordance with the high initial-value predictability of

North Atlantic variability (Kim et al. 2012; Doblas-Reyes

et al. 2013), especially in the subpolar gyre (Hazeleger

et al. 2013), and with the poor predictability of the North

Pacific in state-of-the-art climate models (Kim et al. 2012;

Guemas et al. 2012; Doblas-Reyes et al. 2013).

The period dependence of the PPP—in other words, its

stationarity—was also investigated. This analysis high-

lights a decrease of PPP in the more recent period. This

decrease is attributed to the thinning of the ice cover, as

well as the disappearance of sea ice in areas where the SST

and SSS exhibit a strong variability such as the convection

zone in the Greenland Sea. Concerning the Central Arctic

SIV PPP, its reduction comes from the combined effect of a

faster divergence of DEC members and a reduction of the

internal variability estimated by HIST member spread. The

faster rate of divergence can be attributed to the thinning of

the sea ice cover, making it more sensitive to atmospheric

fluctuations. This lower PPP associated with a thinner ice

regime has already been mentioned in previous studies,

such as Holland et al. (2011), showing that this finding is
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not restricted to the CNRM-CM5.1 model. The thinning

and associated rise of sensitivity to atmospheric fluctua-

tions will have also a strong impact on the summer SIE

variability and predictability. Indeed, studies focusing on

seasonal Arctic sea ice predictability have already

emphasized the important role of thick winter sea ice in

SIE predictability of the following summer. (Holland et al.

2011; Chevallier and Salas y Mélia 2012). This is consis-

tent with the faster DEC ensemble divergence of summer

Arctic SIE found in the recent period for the first lead time

(i.e. 9 months lead time, not shown).

Interestingly, the Labrador Sea seems to behave differ-

ently from the rest of the Arctic, with an increase of the

PPP during the recent period. However, this result should

be interpreted with caution, as the Labrador sea ice cover

variability is underestimated in the model. This underesti-

mation prevents to reproduce the negative correlation

between sea ice extent in the Labrador and GIN Seas

regions associated with the observed Atlantic sea ice see-

saw (Fang and Wallace 1994; Ukita et al. 2007). However,

this negative correlation found in observations suggests the

existence of a common driving mechanism exhibiting

opposite impacts on sea ice variability and sea ice PPP in

the two regions. A good candidate would be the North

Atlantic Oscillation (NAO). Positive NAO dominance,

together with the associated northerly winds through the

Fram Strait, creates favorable conditions for large sea ice

export (Vinje 2001; Kwok et al. 2004; kwok et al. 2009;

Kwok et al. 2013). According to Mysak et al. (1990), and

Koenigk et al. (2006), this sea ice export causes fresh

water, and therefore SIE, anomalies, in the Labrador Sea a

few years later. This export also depends on the propaga-

tion of SIT anomalies across the Arctic, through the

Transpolar Drift stream to the Fram Strait. This link with

sea ice advection anomalies formed several years earlier

near the Siberian coast, strengthened by favorable export

conditions, could explain the larger predictability of the sea

ice cover in the Labrador Sea during long positive NAO

periods. Note that the northerly winds that create favorable

conditions of sea ice export also drive a westward Ekman

drift along the East Greenland Current (EGC) that tends to

push the sea ice toward the Greenland coast, preventing it

from penetrating into the Greenland Sea (Germe et al.

2011). This could explain the disappearance of sea ice

cover in the central Greenland Sea during the recent period,

as well as the weak impact of the export on the interannual

variability of the GIN Seas SIE. Döscher et al. (2010) also

associated a multiyear negative trend of summer SIE

ensemble spread with a positive trend of the NAO winter

index. This summer SIE, restricted to the Central Arctic,

shows that a positive NAO trend would also impact the

Central Arctic internal variability. Therefore, a positive

trend of the NAO index in HIST could explain most of the

PPP evolution in the Central Arctic as well as in the GIN

and Labrador Seas. Unfortunately, individual HIST mem-

bers exhibit greatly varying trends of the NAO index (taken

as the first principal component of the winter averaged sea

level pressure over the North Atlantic domain used by

Hurrell et al. (2003)), showing that the evolution of sea ice

variability in the Labrador and GIN Seas cannot be

explained by a boundary-forced positive NAO trend.

However, the link between the Fram Strait sea ice and

freshwater export and the NAO has been identified in

observations, and might differ in CNRM-CM5.1. Further-

more, some studies showed that this link is strongly

dependent on the period (Vinje 2001; Hilmer and Jung

2000; Schmith and Hansen 2003) and that other large-scale

circulation patterns involving northerly winds across the

Fram Strait might play a more important role in this export

(Koenigk 2006; Wu et al. 2006; Tsukernik et al. 2009). A

significant positive trend of both freshwater and sea ice

mass annual export through the Fram Strait has been found

over the 1958–2008 period in HIST, giving some confi-

dence as to the impact of the Fram Strait export on

observed PPP variations in the GIN and Labrador Seas. A

more detailed analysis of the mechanisms involved in this

export, as well as in sea ice cover variability in Atlantic

marginal Seas in CNRM-CM5.1, and their eventual evo-

lution according to the boundary forcing in the recent

period, would be needed to answer properly to this ques-

tion. This analysis goes beyond the scope of this paper, and

will be the subject of future work.

The very high potential predictability of the GIN Seas

before 1986, and the higher potential predictability of the

Atlantic sector compared to the Pacific sector in general,

has yet to be understood. The persistence of anomalies in

SIE, as well as in SIV, evaluated from NUD, is very weak

(no more than 2 years) in all six regional domains (not

shown). Furthermore, this persistence is not longer in the

Atlantic sector, even in the GIN seas, and cannot explain

the longer PPP observed in this area. This low persistence

of the sea ice cover anomalies in the GIN Seas suggests

that the PPP results from a dynamical effect. In addition to

the already mentioned Arctic sea ice or freshwater export

role (Griffies and Bryan 1997; Koenigk et al. 2006;

Koenigk and Mikolajewicz 2009), Atlantic water tempera-

ture and salinity anomalies advection might be a significant

source of predictability of the sea ice cover in this region, as

suggested by Schlichtholz (2011). In the GIN Seas, the

reemergence of oceanic anomalies due to the proximity of

the deep water formation zone might also play an important

role in sea ice cover variability and predictability (Roach

et al. 1993; Bitz et al. 2005; Schlichtholz 2011). Finally, the

correlation found by Koenigk et al. (2012) between the sea

ice cover in the GIN and Labrador Seas and the MOC

suggests an influence of the large scale oceanic circulation
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as well. In conclusion, the Atlantic Subarctic Seas undergo

strong antagonist oceanic influences, leading to a complex

local variability which is very difficult to understand, but

clearly strongly linked to the long-term evolving ocean.

In contrast to the high PPP of Arctic sea ice, it has been

shown that the DEC prediction skill evaluated from ACC

of the whole Arctic SIE/SIV is mostly due to external

forcing, with no improvement from initialization. In

accordance with the PPP analysis, this result is contrasted

when we examine regional indices. An added value of the

initialization protocol has been found for the Labrador and

GIN Seas SIE predictions during the first 2 years. In the

GIN Seas, the prediction skill seems to be dominated by

the boundary condition changes beyond this timescale,

while the boundary-condition prediction skill rises only for

timescales exceeding 6 years in the Labrador Sea. The

Labrador and GIN Seas SIV exhibit the same added value

of the initialization during the first 2 and 1 year of inte-

gration, respectively. In contrast, central Arctic SIV pre-

dictions show an additional value of the initialization

protocol only during the first few months, and this added

value is noticeable only after detrending. This shows that,

despite its large PPP, the central Arctic SIV prediction skill

is dominated by climate external forcing rather than initial

conditions. This is consistent with the large part of variance

explained by the trend taken as the linear regression on the

CO2 time series (80 % in NUD). Regarding SIE, these

results seem robust, as they remain quasi-unchanged when

using HadISST dataset as a target instead of NUD (not

shown). The contrasted findings regarding potential pre-

dictability and prediction skill might be partially due to an

overestimation of the potential predictability coming from

the generation ensemble technique, or the metric; however,

it suggests that substantial improvements could be made in

order to enhance the prediction skill.

The Arctic is changing rapidly. This change affects the

mean state of various components of the Arctic system, but

this analysis shows that the variability of those components

changes as well. Variability changes will have a strong

impact on predictability. Therefore, long-term changes of

seasonal to interannual variability and associated interac-

tions among components could be better understood, with

the aim of possible near-term climate predictions. Another

important aspect highlighted in this paper is that the

common interpretation of larger internal variability

implying reduced predictability might be incomplete.

Indeed, an increase of internal variability is not necessarily

associated with a faster divergence of initialized ensemble

spread, which would, indeed, lead to a reduction of the

potential predictability. On the contrary, such an increase,

without any increase in the chaotic nature of the system

(DEC rate of divergence), will lead to higher potential

predictability. In the same way, a decrease of internal

variability, without any decrease of the chaotic nature of

the system, will lead to weaker potential predictability. Of

course, if the internal variability tends to zero (as observed,

for instance for the GIN Seas SIE in recent years), the PPP

will tend to zero as well, but this PPP will no longer be

relevant. Therefore, PPP time evolution analysis should

always take into account whether its changes were induced

by the internal variability or the rate of divergence.
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