165 research outputs found
A sensitive APEX and ALMA CO(1-0), CO(2-1), CO(3-2), and [CI](1-0) spectral survey of 40 local (U)LIRGs
We present a high sensitivity spectral line survey of CO(1-0), CO(2-1),
CO(3-2) and [CI](1-0) in 40 local (ultra) luminous infrared galaxies
((U)LIRGs), all with previous Herschel OH119 m observations. We use
single-dish observations (PI and archival) conducted with APEX, complemented
with ALMA and ACA data. We study the total emission and pay special attention
to the extended low-surface brightness components. We find a tight correlation
between low-J CO and [CI] line luminosities suggesting their emission arise
from similar regions, at least when averaged over galactic scales. We estimate
a median CO-to-H conversion factor of M (K km
s pc for ULIRGs, using [CI] as an independent tracer. We
derive median galaxy-integrated CO line ratios (, and
), as well as , significantly higher than normal star forming
galaxies, confirming the exceptional molecular gas properties of ULIRGs. We
find that and are poor tracers of CO excitation in ULIRGs,
while shows a positive trend with and SFR, and a negative
trend with the H gas depletion timescales (). When studying CO
line ratios as a function of gas kinematics, we find a positive relation
between and , which can be explained by CO opacity effects.
We find that the linewidths of [CI] lines are ~10% narrower than CO lines,
which may suggest that the low optical depth of [CI] can challenge its
detection in diffuse, low-surface brightness outflows, and so its use as a
tracer of CO-dark H gas in these components. Finally, we find that higher
are associated to longer , consistent with the hypothesis
that AGN feedback may reduce the efficiency of star formation.Comment: Accepted for publication by A&A. 42 pages, 22 figures. Abstract
summarised for arXiv submissio
Algebraic Comparison of Partial Lists in Bioinformatics
The outcome of a functional genomics pipeline is usually a partial list of
genomic features, ranked by their relevance in modelling biological phenotype
in terms of a classification or regression model. Due to resampling protocols
or just within a meta-analysis comparison, instead of one list it is often the
case that sets of alternative feature lists (possibly of different lengths) are
obtained. Here we introduce a method, based on the algebraic theory of
symmetric groups, for studying the variability between lists ("list stability")
in the case of lists of unequal length. We provide algorithms evaluating
stability for lists embedded in the full feature set or just limited to the
features occurring in the partial lists. The method is demonstrated first on
synthetic data in a gene filtering task and then for finding gene profiles on a
recent prostate cancer dataset
A four-organ-chip for interconnected long-term co-culture of human intestine, liver, skin and kidney equivalents
Systemic absorption and metabolism of drugs in the small intestine, metabolism by the liver as well as excretion by the kidney are key determinants of efficacy and safety for therapeutic candidates. However, these systemic responses of applied substances lack in most in vitro assays. In this study, a microphysiological system maintaining the functionality of four organs over 28 days in co-culture has been established at a minute but standardized microsystem scale. Preformed human intestine and skin models have been integrated into the four-organ-chip on standard cell culture inserts at a size 100000-fold smaller than their human counterpart organs. A 3D-based spheroid, equivalent to ten liver lobules, mimics liver function. Finally, a barrier segregating the media flow through the organs from fluids excreted by the kidney has been generated by a polymeric membrane covered by a monolayer of human proximal tubule epithelial cells. A peristaltic on-chip micropump ensures pulsatile media flow interconnecting the four tissue culture compartments through microfluidic channels. A second microfluidic circuit ensures drainage of the fluid excreted through the kidney epithelial cell layer. This four-organ-chip system assures near to physiological fluid-to-tissue ratios. In-depth metabolic and gene analysis revealed the establishment of reproducible homeostasis among the co-cultures within two to four days, sustainable over at least 28 days independent of the individual human cell line or tissue donor background used for each organ equivalent. Lastly, 3D imaging two-photon microscopy visualised details of spatiotemporal segregation of the two microfluidic flows by proximal tubule epithelia. To our knowledge, this study is the first approach to establish a system for in vitro microfluidic ADME profiling and repeated dose systemic toxicity testing of drug candidates over 28 days.BMBF, 0315569, GO-Bio 3: Multi-Organ-Bioreaktoren für die prädiktive Substanztestung im Chipforma
User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy
Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians’ expertise and computers’ potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the “strokes” and the “contour”, to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design
Reversible Integration of Microfluidic Devices with Microelectrode Arrays for Neurobiological Applications
The majority of current state-of-the-art microfluidic devices are fabricated via replica molding of the fluidic channels into PDMS elastomer and then permanently bonding it to a Pyrex surface using plasma oxidation. This method presents a number of problems associated with the bond strengths, versatility, applicability to alternative substrates, and practicality. Thus, the aim of this study was to investigate a more practical method of integrating microfluidics which is superior in terms of bond strengths, reversible, and applicable to a larger variety of substrates, including microfabricated devices. To achieve the above aims, a modular microfluidic system, capable of reversible microfluidic device integration, simultaneous surface patterning and multichannel fluidic perfusion, was built. To demonstrate the system’s potential, the ability to control the distribution of A549 cells inside a microfluidic channel was tested. Then, the system was integrated with a chemically patterned microelectrode array, and used it to culture primary, rat embryo spinal cord neurons in a dynamic fluidic environment. The results of this study showed that this system has the potential to be a cost effective and importantly, a practical means of integrating microfluidics. The system’s robustness and the ability to withstand extensive manual handling have the additional benefit of reducing the workload. It also has the potential to be easily integrated with alternative substrates such as stainless steel or gold without extensive chemical modifications. The results of this study are of significant relevance to research involving neurobiological applications, where primary cell cultures on microelectrode arrays require this type of flexible integrated solution
Climate change and the emergence of vector-borne diseases in Europe: Case study of dengue fever
Background: Dengue fever is the most prevalent mosquito-borne viral disease worldwide. Dengue transmission is critically dependent on climatic factors and there is much concern as to whether climate change would spread the disease to areas currently unaffected. The occurrence of autochthonous infections in Croatia and France in 2010 has raised concerns about a potential re-emergence of dengue in Europe. The objective of this study is to estimate dengue risk in Europe under climate change scenarios. Methods. We used a Generalized Additive Model (GAM) to estimate dengue fever risk as a function of climatic variables (maximum temperature, minimum temperature, precipitation, humidity) and socioeconomic factors (population density, urbanisation, GDP per capita and population size), under contemporary conditions (1985-2007) in Mexico. We then used our model estimates to project dengue incidence under baseline conditions (1961-1990) and three climate change scenarios: short-term 2011-2040, medium-term 2041-2070 and long-term 2071-2100 across Europe. The model was used to calculate average number of yearly dengue cases at a spatial resolution of 10 × 10 km grid covering all land surface of the currently 27 EU member states. To our knowledge, this is the first attempt to model dengue fever risk in Europe in terms of disease occurrence rather than mosquito presence. Results: The results were presented using Geographical Information System (GIS) and allowed identification of areas at high risk. Dengue fever hot spots were clustered around the coastal areas of the Mediterranean and Adriatic seas and the Po Valley in northern Italy. Conclusions: This risk assessment study is likely to be a valuable tool assisting effective and targeted adaptation responses to reduce the likely increased burden of dengue fever in a warmer world
- …