38 research outputs found

    Synergistic and competitive aspects of the adsorption of Poly(ethylene glycol) and Poly(vinyl alcohol) onto Na-Bentonite

    Get PDF
    Graph Presented) The competitive adsorption of poly(ethylene glycol) (PEG) and poly(vinyl alcohol) (PVOH) onto Na-bentonite has been assessed quantitatively. Particular emphasis was focused on the amount of organic located within the bentonite interlayer and any subsequent eff ects on the extent of layer expansion. The individual isotherms showed strong adsorption for both PVOH and PEG at amounts lower than the quantities required to produce a fully loaded bilayer (0.33 g of PVOH/g of clay) and single layered structures (0.10 g of PEG/g of clay), respectively. Above these concentrations, the incremental amounts adsorbed were smaller, and the concentration of adsorbates in solution gradually increased. Na-bentonite adsorbed more PVOH than PEG at any given concentration. In the competitive study, the amount of PVOH adsorbed was enhanced in the presence of PEG (0.10 and 0.30 g/g of clay), but less PEG was adsorbed. At low loadings of PVOH (0.02-0.10 g/g of clay), the amount of adsorbed PEG was increased but at higher PVOH levels PEG adsorption was reduced. The XRD data showed stepped changes in the d-spacing as the adsorbed amounts of both PEG and PVOH increased. The PEG-bentonite samples did not expand beyond a bilayer structure (18 A˚), but the XRD data for PVOH-treated samples indicated the formation of multilayer structures (d ≥ 44 A˚)

    Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage

    Get PDF
    Internal hemorrhaging is a leading cause of death after traumatic injury on the battlefield. Although several surgical approaches such as the use of fibrin glue and tissue adhesive have been commercialized to achieve hemostasis, these approaches are difficult to employ on the battlefield and cannot be used for incompressible wounds. Here, we present shear-thinning nanocomposite hydrogels composed of synthetic silicate nanoplatelets and gelatin as injectable hemostatic agents. These materials are demonstrated to decrease in vitro blood clotting times by 77%, and to form stable clot-gel systems. In vivo tests indicated that the nanocomposites are biocompatible and capable of promoting hemostasis in an otherwise lethal liver laceration. The combination of injectability, rapid mechanical recovery, physiological stability, and the ability to promote coagulation result in a hemostat for treating incompressible wounds in out-of-hospital, emergency conditions.United States. Army Research Office (Contract W911NF-13-D-0001)National Institutes of Health (U.S.) (Interdepartmental Biotechnology Training Program NIH/NIGMS 5T32GM008334

    Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities

    Get PDF
    Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported â from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program. The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/ 2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    Morphing in nature and beyond: a review of natural and synthetic shape-changing materials and mechanisms

    Get PDF
    Shape-changing materials open an entirely new solution space for a wide range of disciplines: from architecture that responds to the environment and medical devices that unpack inside the body, to passive sensors and novel robotic actuators. While synthetic shape-changing materials are still in their infancy, studies of biological morphing materials have revealed key paradigms and features which underlie efficient natural shape-change. Here, we review some of these insights and how they have been, or may be, translated to artificial solutions. We focus on soft matter due to its prevalence in nature, compatibility with users and potential for novel design. Initially, we review examples of natural shape-changing materials—skeletal muscle, tendons and plant tissues—and compare with synthetic examples with similar methods of operation. Stimuli to motion are outlined in general principle, with examples of their use and potential in manufactured systems. Anisotropy is identified as a crucial element in directing shape-change to fulfil designed tasks, and some manufacturing routes to its achievement are highlighted. We conclude with potential directions for future work, including the simultaneous development of materials and manufacturing techniques and the hierarchical combination of effects at multiple length scales.</p

    Effects of Au nanoparticles on thermoresponsive genipin-crosslinked gelatin hydrogels

    Get PDF
    Gold gelatin hydrogel nanocomposites crosslinked with genipin have been prepared, and the effect of citrate capped Au nanoparticles (NPs) as nanofillers in the crosslinking and swelling of gelatin and release of a model drug (methylene blue) from gelatin nanocomposites have been investigated. The citrate-capped Au NPs prevented the crosslinking reaction between the gelatin and genipin and resulted in less crosslinked hydrogels. Although less crosslinked, the Au gelatin nanocomposites swelled less than the unfilled crosslinked gelatin. The gelatin composites were optically active and thermo-sensitive in a temperature range acceptable for living cells. In vitro release studies demonstrated that the irradiation of the composite gels with monochromatic green light (10532 nm, 100 mW) increases the release of the encapsulated methylene blue, most likely due to the photothermal effect of Au nanoparticles. This opens the possibility to explore the application of these nanocomposites as carriers in remotely controlled light-triggered drug release
    corecore